Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = AT-cut quartz crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1769 KB  
Article
Measurement of the Instrumental Effect Caused by Flexure Clamping on Quartz Crystal Microbalances
by Diego Scaccabarozzi, Chiara Martina, Bortolino Saggin and Emiliano Zampetti
Appl. Sci. 2025, 15(17), 9261; https://doi.org/10.3390/app15179261 - 22 Aug 2025
Viewed by 636
Abstract
This study focuses on piezoelectric quartz crystal microbalances (QCMs), widely used in space and military instrumentation, as fundamental components in highly sensitive mass detection devices. In this research, a proper setup was developed to investigate the relationship between clamping preload and crystal resonance, [...] Read more.
This study focuses on piezoelectric quartz crystal microbalances (QCMs), widely used in space and military instrumentation, as fundamental components in highly sensitive mass detection devices. In this research, a proper setup was developed to investigate the relationship between clamping preload and crystal resonance, with particular attention to the effects of concentrated loads. The latter ones, not properly addressed in the literature, come from the need to safely clamp QCMs in critical environments, like those experienced during the launch of rockets or payloads. Thus, the study investigates the behaviour of piezoelectric quartz crystals (AT-cut, 10 MHz) with gold electrodes, using a QCMs’ three-pinned mounting system. Measurements showed that the effect of the preload on the frequency variation resulted in a repeatable increase in the crystals’ resonance, increasing the loading, up to three ppm more than the unloaded quartz crystal oscillating frequency. Full article
Show Figures

Figure 1

13 pages, 7876 KB  
Communication
Surface Roughness Effects on the Vibration Characteristics of AT-Cut Quartz Crystal Plate
by Mengjie Li, Peng Li, Nian Li, Dianzi Liu, Iren E. Kuznetsova and Zhenghua Qian
Sensors 2023, 23(11), 5168; https://doi.org/10.3390/s23115168 - 29 May 2023
Cited by 4 | Viewed by 3100
Abstract
With the miniaturization and high-frequency requirements of quartz crystal sensors, microscopic issues affecting operating performance, e.g., the surface roughness, are receiving more and more attention. In this study, the activity dip caused by surface roughness is revealed, with the physical mechanism clearly demonstrated. [...] Read more.
With the miniaturization and high-frequency requirements of quartz crystal sensors, microscopic issues affecting operating performance, e.g., the surface roughness, are receiving more and more attention. In this study, the activity dip caused by surface roughness is revealed, with the physical mechanism clearly demonstrated. Firstly, the surface roughness is considered as a Gaussian distribution, and the mode coupling properties of an AT-cut quartz crystal plate are systematically investigated under different temperature environments with the aid of two-dimensional thermal field equations. The resonant frequency, frequency–temperature curves, and mode shapes of the quartz crystal plate are obtained through the partial differential equation (PDE) module of COMSOL Multiphysics software for free vibration analysis. For forced vibration analysis, the admittance response and phase response curves of quartz crystal plate are calculated via the piezoelectric module. The results from both free and forced vibration analyses demonstrate that surface roughness reduces the resonant frequency of quartz crystal plate. Additionally, mode coupling is more likely to occur in a crystal plate with a surface roughness, leading to activity dip when temperature varies, which decreases the stability of quartz crystal sensors and should be avoided in device fabrication. Full article
Show Figures

Figure 1

13 pages, 7123 KB  
Article
Spurious Resonance of the QCM Sensor: Load Analysis Based on Impedance Spectroscopy
by Ioan Burda
Sensors 2023, 23(10), 4939; https://doi.org/10.3390/s23104939 - 21 May 2023
Cited by 3 | Viewed by 2411
Abstract
A research topic of equal importance to technological and application fields related to quartz crystal is the presence of unwanted responses known as spurious resonances. Spurious resonances are influenced by the surface finish of the quartz crystal, its diameter and thickness, and the [...] Read more.
A research topic of equal importance to technological and application fields related to quartz crystal is the presence of unwanted responses known as spurious resonances. Spurious resonances are influenced by the surface finish of the quartz crystal, its diameter and thickness, and the mounting technique. In this paper, spurious resonances associated with fundamental resonance are studied by impedance spectroscopy to determine their evolution under load conditions. Investigation of the response of these spurious resonances provides new insights into the dissipation process at the QCM sensor surface. The significant increase of the motional resistance for spurious resonances at the transition from air to pure water is a specific situation revealed experimentally in this study. It has been shown experimentally that in the range between the air and water media, spurious resonances are much more attenuated than the fundamental resonance, thus providing support for investigating the dissipation process in detail. In this range, there are many applications in the field of chemical sensors or biosensors, such as VOC sensors, humidity sensors, or dew point sensors. The evolution of D factor with increasing medium viscosity is significantly different for spurious resonances compared to fundamental resonance, suggesting the usefulness of monitoring them in liquid media. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 5480 KB  
Communication
Study of Force-Frequency Characteristics in AT-Cut Strip Quartz Crystal Resonators with Different Rotation Angles
by Gang Yang, Xianhe Huang, Ke Tan, Qiao Chen and Wei Pan
Sensors 2023, 23(6), 2996; https://doi.org/10.3390/s23062996 - 10 Mar 2023
Cited by 1 | Viewed by 3059
Abstract
This paper investigated the force-frequency characteristics of AT-cut strip quartz crystal resonator (QCR) employing finite element analysis methods and experiments. We used the finite element analysis software COMSOL Multiphysics to calculate the stress distribution and particle displacement of the QCR. Moreover, we analyzed [...] Read more.
This paper investigated the force-frequency characteristics of AT-cut strip quartz crystal resonator (QCR) employing finite element analysis methods and experiments. We used the finite element analysis software COMSOL Multiphysics to calculate the stress distribution and particle displacement of the QCR. Moreover, we analyzed the impact of these opposing forces on the frequency shift and strains of the QCR. Meanwhile, the resonant frequency shifts, conductance, and quality factor (Q value) of three AT-cut strip QCRs with rotation angles of 30°, 40°, and 50° under different force-applying positions were tested experimentally. The results showed that the frequency shifts of the QCRs were proportional to the magnitude of the force. The highest force sensitivity was QCR with a rotation angle of 30°, followed by 40°, and 50° was the lowest. And the distance of the force-applying position from the X-axis also affected the frequency shift, conductance, and Q value of the QCR. The results of this paper are instructive for understanding the force-frequency characteristics of strip QCRs with different rotation angles. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3516 KB  
Article
Multiple Quartz Crystals Connected in Parallel for High-Resolution Sensing of Capacitance Changes
by Vojko Matko
Sensors 2022, 22(13), 5030; https://doi.org/10.3390/s22135030 - 3 Jul 2022
Cited by 5 | Viewed by 2980
Abstract
We present a new highly sensitive, low-value capacitance sensor method that uses multiple quartz crystals connected in parallel inside the oscillator. In the experimental setup, the measured (sensible) reactance (capacitance) is connected in parallel to the total shunt capacitance of the quartz crystals, [...] Read more.
We present a new highly sensitive, low-value capacitance sensor method that uses multiple quartz crystals connected in parallel inside the oscillator. In the experimental setup, the measured (sensible) reactance (capacitance) is connected in parallel to the total shunt capacitance of the quartz crystals, oscillating in the oscillator. Because AT-cut crystals have a certain nonlinear frequency–temperature dependence, we use the switching mode method, by which we achieve a temperature compensation of the AT-cut crystals’ frequency–temperature characteristics in the temperature range between 050 °C. The oscillator switching method also compensates for any other influences on the frequency of the oscillator, such as ageing of the crystals and oscillator elements, supply voltage fluctuations, and other parasitic impedances in the oscillating circuit. Subsequently using two 50-ms-delayed switches between the measuring and reference capacitors, the experimental error in measuring the capacitance is lowered for measurements under a dynamic temperature variation in the range of 050 °C. The experimental results show that the switching method, which includes a multiple quartz connection and high-temperature compensation improvement of the quartz crystals’ characteristics, enables a sub-aF resolution. It converts capacitance changes in the range 10 zF200 fF to frequencies in the range 4 kHz100 kHz. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3228 KB  
Article
Application of Multiharmonic QCM-D for Detection of Plasmin at Hydrophobic Surfaces Modified by β-Casein
by Sandro Spagnolo, Eric S. Muckley, Ilia N. Ivanov and Tibor Hianik
Chemosensors 2022, 10(4), 143; https://doi.org/10.3390/chemosensors10040143 - 11 Apr 2022
Cited by 7 | Viewed by 3734
Abstract
Plasmin protease plays an important role in many processes in living systems, including milk. Monitoring plasmin activity is important for control of the nutritional quality of milk and other dairy products. We designed a biosensor to detect the proteolytic activity of plasmin, using [...] Read more.
Plasmin protease plays an important role in many processes in living systems, including milk. Monitoring plasmin activity is important for control of the nutritional quality of milk and other dairy products. We designed a biosensor to detect the proteolytic activity of plasmin, using multiharmonic quartz crystal microbalance with dissipation (QCM-D). The β-casein immobilized on the hydrophobic surface of 1-dodecanethiol on the AT-cut quartz crystal was used to monitor plasmin activity. We demonstrated detection of plasmin in a concentration range of 0.1–20 nM, with the limit of detection about 0.13 ± 0.01 nM. The analysis of viscoelastic properties of the β-casein layer showed rapid changes of shear elasticity modulus, μ, and coefficient of viscosity, η, at plasmin sub-nanomolar concentrations, followed by modest changes at nanomolar concentrations, indicating multilayer architecture β-casein. A comparative analysis of viscoelastic properties of β-casein layers following plasmin and trypsin cleavage showed that the higher effect of trypsin was due to larger potential cleavage sites of β-casein. Full article
Show Figures

Figure 1

16 pages, 12458 KB  
Article
Nanostructured Manganite Films Grown by Pulsed Injection MOCVD: Tuning Low- and High-Field Magnetoresistive Properties for Sensors Applications
by Voitech Stankevic, Nerija Zurauskiene, Skirmantas Kersulis, Valentina Plausinaitiene, Rasuole Lukose, Jonas Klimantavicius, Sonata Tolvaišienė, Martynas Skapas, Algirdas Selskis and Saulius Balevicius
Sensors 2022, 22(2), 605; https://doi.org/10.3390/s22020605 - 13 Jan 2022
Cited by 7 | Viewed by 2527
Abstract
The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single [...] Read more.
The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single crystal quartz, polycrystalline Al2O3, and amorphous Si/SiO2 substrates were nanostructured with column-shaped crystallites spread perpendicular to the film plane. It was found that morphology, microstructure, and magnetoresistive properties of the films strongly depend on the substrate used. The low-field MR at low temperatures (25 K) showed twice higher values (−31% at 0.7 T) for LSMO/quartz in comparison to films grown on the other substrates (−15%). This value is high in comparison to results published in literature for manganite films prepared without additional insulating oxides. The high-field MR measured up to 20 T at 80 K was also the highest for LSMO/quartz films (−56%) and demonstrated the highest sensitivity S = 0.28 V/T at B = 0.25 T (voltage supply 2.5 V), which is promising for magnetic sensor applications. It was demonstrated that Mn excess Mn/(La + Sr) = 1.21 increases the metal-insulator transition temperature of the films up to 285 K, allowing the increase in the operation temperature of magnetic sensors up to 363 K. These results allow us to fabricate CMR sensors with predetermined parameters in a wide range of magnetic fields and temperatures. Full article
Show Figures

Figure 1

23 pages, 5297 KB  
Article
An Adaptive Measurement System for the Simultaneous Evaluation of Frequency Shift and Series Resistance of QCM in Liquid
by Ada Fort, Enza Panzardi, Valerio Vignoli, Marco Tani, Elia Landi, Marco Mugnaini and Pietro Vaccarella
Sensors 2021, 21(3), 678; https://doi.org/10.3390/s21030678 - 20 Jan 2021
Cited by 25 | Viewed by 4600
Abstract
In this paper, a novel measurement system based on Quartz Crystal Microbalances is presented. The proposed solution was conceived specifically to overcome the measurement problems related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor of the resonant system is [...] Read more.
In this paper, a novel measurement system based on Quartz Crystal Microbalances is presented. The proposed solution was conceived specifically to overcome the measurement problems related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor of the resonant system is severely reduced with respect to in-gas applications. The QCM is placed in a Meacham oscillator embedding an amplifier with adjustable gain, an automatic strategy for gain tuning allows for maintaining the oscillator frequency close to the series resonance frequency of the quartz, which is related in a simple way with the physical parameters of interest. The proposed system can be used to monitor simultaneously both the series resonant frequency and the equivalent electromechanical resistance of the quartz. The feasibility and the performance of the proposed method are proven by means of measurements obtained with a prototype based on a 10-MHz AT-cut quartz. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 4301 KB  
Letter
Discrimination Improvement of a Gas Sensors’ Array Using High-Frequency Quartz Crystal Microbalance Coated with Polymeric Films
by Marcos Rodríguez-Torres, Víctor Altuzar, Claudia Mendoza-Barrera, Georgina Beltrán-Pérez, Juan Castillo-Mixcóatl and Severino Muñoz-Aguirre
Sensors 2020, 20(23), 6972; https://doi.org/10.3390/s20236972 - 6 Dec 2020
Cited by 16 | Viewed by 3616
Abstract
The discrimination improvement of an array of four highly sensitive 30 MHz gas quartz crystal microbalance (QCM) sensors was performed and compared to a similar system based on a 12-MHz QCM. The sensing polymeric films were ethyl cellulose (EC), poly-methyl methacrylate (PMMA), Apiezon [...] Read more.
The discrimination improvement of an array of four highly sensitive 30 MHz gas quartz crystal microbalance (QCM) sensors was performed and compared to a similar system based on a 12-MHz QCM. The sensing polymeric films were ethyl cellulose (EC), poly-methyl methacrylate (PMMA), Apiezon L (ApL), and Apiezon T (ApT) and they were coated over the AT-cut QCM devices by the drop casting technique. All the sensors had almost the same film thickness (0.2 μm). The fabricated QCM sensor arrays were exposed to three different concentrations, corresponding to 5, 10, and 15 μL, of ethanol, ethyl acetate, and heptane vapors. The steady state sensor responses were measured in a static system at a temperature of 20 °C and relative humidity of 22%. Our results showed that the 30-MHz sensors have a higher sensitivity than 12-MHz ones (around 5.73 times), independently of the sensing film and measured sample. On the other hand, principal component analysis and discriminant analysis were performed using the raw data of the responses. An improvement of the classification percentage between 12 MHz and 30 MHz sensors was found. However, it was not sufficient, especially for low concentrations. Furthermore, using partition coefficient and discriminant analysis (DA), an improvement of 100% classification of the three samples was achieved for the case of the 30-MHz sensor array. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

18 pages, 1383 KB  
Review
Application of QCM in Peptide and Protein-Based Drug Product Development
by Dorian Migoń, Tomasz Wasilewski and Dariusz Suchy
Molecules 2020, 25(17), 3950; https://doi.org/10.3390/molecules25173950 - 29 Aug 2020
Cited by 52 | Viewed by 8554
Abstract
AT-cut quartz crystals vibrating in the thickness-shear mode (TSM), especially quartz crystal resonators (QCRs), are well known as very efficient mass sensitive systems because of their sensitivity, accuracy, and biofunctionalization capacity. They are highly reliable in the measurement of the mass of deposited [...] Read more.
AT-cut quartz crystals vibrating in the thickness-shear mode (TSM), especially quartz crystal resonators (QCRs), are well known as very efficient mass sensitive systems because of their sensitivity, accuracy, and biofunctionalization capacity. They are highly reliable in the measurement of the mass of deposited samples, in both gas and liquid matrices. Moreover, they offer real-time monitoring, as well as relatively low production and operation costs. These features make mass sensitive systems applicable in a wide range of different applications, including studies on protein and peptide primary packaging, formulation, and drug product manufacturing process development. This review summarizes the information on some particular implementations of quartz crystal microbalance (QCM) instruments in protein and peptide drug product development as well as their future prospects. Full article
(This article belongs to the Special Issue Peptide Chemistry Ⅱ)
Show Figures

Figure 1

8 pages, 2440 KB  
Article
Bulk Acoustic Wave Characteristics of Pseudo Lateral-Field-Excitation on LGT Single Crystal for Liquid Phase Sensing
by Jiachao Xu, Tingfeng Ma, Liang Yan, Mingfei Wang, Ji Wang, Jianke Du and Chao Zhang
Sensors 2019, 19(5), 1076; https://doi.org/10.3390/s19051076 - 3 Mar 2019
Cited by 4 | Viewed by 3355
Abstract
In the present study, pseudo lateral-field-excitation (LFE) bulk acoustic wave characteristics on LGT crystals are investigated to increase the sensitivity of LFE devices on the liquid characteristic variations. The cut orientation of LGT crystals for pseudo-LFE is investigated and verified experimentally. For an [...] Read more.
In the present study, pseudo lateral-field-excitation (LFE) bulk acoustic wave characteristics on LGT crystals are investigated to increase the sensitivity of LFE devices on the liquid characteristic variations. The cut orientation of LGT crystals for pseudo-LFE is investigated and verified experimentally. For an LFE device in the pseudo-LFE mode, the thickness shear mode wave is excited by the thickness field rather than the lateral field. The present work shows that when the (yxl) 13.8° LGT plate is excited by the electric field parallel to the crystallographic axis x, it operates in the pseudo-LFE mode. Moreover, characteristics of devices including the sensitivity and impedance are investigated. The present work shows that sensitivity of LFE devices to variation of the conductivity and permittivity of the aqueous solution are 9 and 3.2 times higher than those for AT-cut quartz crystal based devices, respectively. Furthermore, it has been found that the sensitivity of the LGT LFE sensor to liquid acoustic viscosity variations is 1.4 times higher than the one for the AT-cut quartz sensor. The results are a critical basis of designing high-performance liquid phase sensors by using pseudo-LFE devices. Full article
(This article belongs to the Special Issue Surface Acoustic Wave and Bulk Acoustic Wave Sensors 2019)
Show Figures

Figure 1

9 pages, 2526 KB  
Letter
A Practical Model of Quartz Crystal Microbalance in Actual Applications
by Xianhe Huang, Qingsong Bai, Jianguo Hu and Dong Hou
Sensors 2017, 17(8), 1785; https://doi.org/10.3390/s17081785 - 3 Aug 2017
Cited by 79 | Viewed by 10517
Abstract
A practical model of quartz crystal microbalance (QCM) is presented, which considers both the Gaussian distribution characteristic of mass sensitivity and the influence of electrodes on the mass sensitivity. The equivalent mass sensitivity of 5 MHz and 10 MHz AT-cut QCMs with different [...] Read more.
A practical model of quartz crystal microbalance (QCM) is presented, which considers both the Gaussian distribution characteristic of mass sensitivity and the influence of electrodes on the mass sensitivity. The equivalent mass sensitivity of 5 MHz and 10 MHz AT-cut QCMs with different sized electrodes were calculated according to this practical model. The equivalent mass sensitivity of this practical model is different from the Sauerbrey’s mass sensitivity, and the error between them increases sharply as the electrode radius decreases. A series of experiments which plate rigid gold film onto QCMs were carried out and the experimental results proved this practical model is more valid and correct rather than the classical Sauerbrey equation. The practical model based on the equivalent mass sensitivity is convenient and accurate in actual measurements. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

17 pages, 7331 KB  
Article
Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms
by Pedro Castro, Luis Elvira, Juan Ramón Maestre and Francisco Montero de Espinosa
Sensors 2017, 17(6), 1395; https://doi.org/10.3390/s17061395 - 15 Jun 2017
Cited by 7 | Viewed by 4734
Abstract
This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM) resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and [...] Read more.
This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM) resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and dissipation factor) that vary in contact with the analyzed sample. This work shows that different variations during the microorganism growth can be detected by the sensors and highlights which of these changes are indicative of biofilm formation. TSM sensors have been used to monitor in real time the development of Staphylococcus epidermidis and Escherichia coli biofilms, formed on the gold electrode of the quartz crystal resonators, without any coating. Strains with different ability to produce biofilm have been tested. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to upper layers of the biofilm. The experiments allow the microrheological evaluation of the complex shear modulus (G* = G′ + jG″) of the biofilm at 5 MHz and at 15 MHz, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of S. epidermidis and E. coli, is an increase in the resonance frequency shift of the quartz crystal sensor, which is connected with an increase of the real shear modulus, related to the elasticity or stiffness of the layer. In addition both the real and the imaginary shear modulus are frequency dependent at these high frequencies in biofilms. Full article
(This article belongs to the Special Issue Whole Cell-Based Biosensors and Application)
Show Figures

Figure 1

16 pages, 3662 KB  
Article
Analysis and Validation of Contactless Time-Gated Interrogation Technique for Quartz Resonator Sensors
by Marco Baù, Marco Ferrari and Vittorio Ferrari
Sensors 2017, 17(6), 1264; https://doi.org/10.3390/s17061264 - 2 Jun 2017
Cited by 27 | Viewed by 5647
Abstract
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. [...] Read more.
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technologies in Italy 2016)
Show Figures

Figure 1

18 pages, 2269 KB  
Article
High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation
by Vojko Matko and Miro Milanović
Sensors 2014, 14(10), 19242-19259; https://doi.org/10.3390/s141019242 - 16 Oct 2014
Cited by 22 | Viewed by 6907
Abstract
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of [...] Read more.
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz. Full article
(This article belongs to the Special Issue Smart Materials for Switchable Sensors)
Show Figures

Back to TopTop