Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = ARP spoofing attack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2512 KB  
Article
Investigation of Secure Communication of Modbus TCP/IP Protocol: Siemens S7 PLC Series Case Study
by Quy-Thinh Dao, Le-Trung Nguyen, Trung-Kien Ha, Viet-Hoang Nguyen and Tuan-Anh Nguyen
Appl. Syst. Innov. 2025, 8(3), 65; https://doi.org/10.3390/asi8030065 - 13 May 2025
Cited by 1 | Viewed by 4028
Abstract
Industrial Control Systems (ICS) have become increasingly vulnerable to cyber threats due to the growing interconnectivity with enterprise networks and the Industrial Internet of Things (IIoT). Among these threats, Address Resolution Protocol (ARP) spoofing presents a critical risk to the integrity and reliability [...] Read more.
Industrial Control Systems (ICS) have become increasingly vulnerable to cyber threats due to the growing interconnectivity with enterprise networks and the Industrial Internet of Things (IIoT). Among these threats, Address Resolution Protocol (ARP) spoofing presents a critical risk to the integrity and reliability of Modbus TCP/IP communications, particularly in environments utilizing Siemens S7 programmable logic controllers (PLCs). Traditional defense methods often rely on host-based software solutions or cryptographic techniques that may not be practical for legacy or resource-constrained industrial environments. This paper proposes a novel, lightweight hardware device designed to detect and mitigate ARP spoofing attacks in Modbus TCP/IP networks without relying on conventional computer-based infrastructure. An experimental testbed using Siemens S7-1500 and S7-1200 PLCs (Siemens, Munich, Germany) was established to validate the proposed approach. The results demonstrate that the toolkit can effectively detect malicious activity and maintain stable industrial communication under normal and adversarial conditions. Full article
(This article belongs to the Special Issue Industrial Cybersecurity)
Show Figures

Figure 1

17 pages, 5528 KB  
Article
Protection Schemes for DDoS, ARP Spoofing, and IP Fragmentation Attacks in Smart Factory
by Tze Uei Chai, Hock Guan Goh, Soung-Yue Liew and Vasaki Ponnusamy
Systems 2023, 11(4), 211; https://doi.org/10.3390/systems11040211 - 20 Apr 2023
Cited by 3 | Viewed by 4158
Abstract
Industry Revolution 4.0 connects the Internet of Things (IoT) resource-constrained devices to Smart Factory solutions and delivers insights. As a result, a complex and dynamic network with a vulnerability inherited from the Internet becomes an attractive target for hackers to attack critical infrastructures. [...] Read more.
Industry Revolution 4.0 connects the Internet of Things (IoT) resource-constrained devices to Smart Factory solutions and delivers insights. As a result, a complex and dynamic network with a vulnerability inherited from the Internet becomes an attractive target for hackers to attack critical infrastructures. Therefore, this paper selects three potential attacks with the evaluation of the protections, namely (1) distributed denial of service (DDoS), (2) address resolution protocol (ARP) spoofing, and (3) Internet protocol (IP) fragmentation attacks. In the DDoS protection, the F1-score, accuracy, precision, and recall of the four-feature random forest with principal component analysis (RFPCA) model are 95.65%, 97%, 97.06%, and 94.29%, respectively. In the ARP spoofing, a batch processing method adopts the entropy calculated in the 20 s window with sensitivity to network abnormalities detection of various ARP spoofing scenarios involving victims’ traffic. The detected attacker’s MAC address is inserted in the block list to filter malicious traffic. The proposed protection in the IP fragmentation attack is implementing one-time code (OTC) and timestamp fields in the packet header. The simulation shows that the method detected 160 fake fragments from attackers among 2040 fragments. Full article
(This article belongs to the Topic SDGs 2030 in Buildings and Infrastructure)
Show Figures

Figure 1

21 pages, 640 KB  
Review
A Survey on Consensus Protocols and Attacks on Blockchain Technology
by Abhishek Guru, Bhabendu Kumar Mohanta, Hitesh Mohapatra, Fadi Al-Turjman, Chadi Altrjman and Arvind Yadav
Appl. Sci. 2023, 13(4), 2604; https://doi.org/10.3390/app13042604 - 17 Feb 2023
Cited by 68 | Viewed by 13528
Abstract
In the current era, blockchain has approximately 30 consensus algorithms. This architecturally distributed database stores data in an encrypted form with multiple checks, including elliptical curve cryptography (ECC) and Merkle hash tree. Additionally, many researchers aim to implement a public key infrastructure (PKI) [...] Read more.
In the current era, blockchain has approximately 30 consensus algorithms. This architecturally distributed database stores data in an encrypted form with multiple checks, including elliptical curve cryptography (ECC) and Merkle hash tree. Additionally, many researchers aim to implement a public key infrastructure (PKI) cryptography mechanism to boost the security of blockchain-based data management. However, the issue is that many of these are required for advanced cryptographic protocols. For all consensus protocols, security features are required to be discussed because these consensus algorithms have recently been attacked by address resolution protocols (ARP), distributed denial of service attacks (DDoS), and sharding attacks in a permission-less blockchain. The existence of a byzantine adversary is perilous, and is involved in these ongoing attacks. Considering the above issues, we conducted an informative survey based on the consensus protocol attack on blockchain through the latest published article from IEEE, Springer, Elsevier, ACM, Willy, Hindawi, and other publishers. We incorporate various methods involved in blockchain. Our main intention is to gain clarity from earlier published articles to elaborate numerous key methods in terms of a survey article. Full article
Show Figures

Figure 1

19 pages, 1995 KB  
Article
Experimental Analysis of Security Attacks for Docker Container Communications
by Haneul Lee, Soonhong Kwon and Jong-Hyouk Lee
Electronics 2023, 12(4), 940; https://doi.org/10.3390/electronics12040940 - 13 Feb 2023
Cited by 13 | Viewed by 6855
Abstract
Docker has become widely used as an open-source platform for packaging and running applications as containers. It is in the limelight especially at companies and IT developers that provide cloud services thanks to its advantages such as the portability of applications and being [...] Read more.
Docker has become widely used as an open-source platform for packaging and running applications as containers. It is in the limelight especially at companies and IT developers that provide cloud services thanks to its advantages such as the portability of applications and being lightweight. Docker provides communication between multiple containers through internal network configuration, which makes it easier to configure various services by logically connecting containers to each other, but cyberattacks exploiting the vulnerabilities of the Docker container network, e.g., distributed denial of service (DDoS) and cryptocurrency mining attacks, have recently occurred. In this paper, we experiment with cyberattacks such as ARP spoofing, DDoS, and elevation of privilege attacks to show how attackers can execute various attacks and analyze the results in terms of network traffic, CPU consumption, and malicious reverse shell execution. In addition, by examining the attacks from the network perspective of the Docker container environment, we lay the groundwork for detecting and preventing lateral movement attacks that may occur between the Docker containers. Full article
(This article belongs to the Special Issue Feature Papers in Computer Science & Engineering)
Show Figures

Figure 1

25 pages, 7900 KB  
Article
An Extendable Software Architecture for Mitigating ARP Spoofing-Based Attacks in SDN Data Plane Layer
by Sorin Buzura, Mihaiela Lehene, Bogdan Iancu and Vasile Dadarlat
Electronics 2022, 11(13), 1965; https://doi.org/10.3390/electronics11131965 - 23 Jun 2022
Cited by 9 | Viewed by 4155
Abstract
Software-defined networking (SDN) is an emerging network architecture that brings benefits in network function virtualization, performance, and scalability. However, the scalability feature also increases the number of possible vulnerabilities through multiple entry points in the network. Address Resolution Protocol (ARP) spoofing-based attacks are [...] Read more.
Software-defined networking (SDN) is an emerging network architecture that brings benefits in network function virtualization, performance, and scalability. However, the scalability feature also increases the number of possible vulnerabilities through multiple entry points in the network. Address Resolution Protocol (ARP) spoofing-based attacks are widely encountered and allow an attacker to assume the identity of a different computer, facilitating other attacks, such as Man in the Middle (MitM). In the SDN context, most solutions employ a controller to detect and mitigate attacks. However, interacting with the control plane involves asynchronous network communication, which causes delayed responses to an attack. The current work avoids these delays by being implemented solely in the data plane through extendable and customizable software architecture. Therefore, faster response times improve network reliability by automatically blocking attackers. As attacks can be generated with a variety of tools and in networks experiencing different traffic patterns, the current solution is created to allow flexibility and extensibility, which can be adapted depending on the running environment. Experiments were run performing ARP spoofing-based attacks using KaliLinux, Mininet, and OpenVSwitch. The presented results are based on traffic pattern analysis offering greater customization capabilities and insight compared to similar work in this area. Full article
(This article belongs to the Special Issue Advances in Software Security)
Show Figures

Figure 1

24 pages, 3741 KB  
Article
Lightweight Challenge-Response Authentication in SDN-Based UAVs Using Elliptic Curve Cryptography
by Muhammad Usman, Rashid Amin, Hamza Aldabbas and Bader Alouffi
Electronics 2022, 11(7), 1026; https://doi.org/10.3390/electronics11071026 - 25 Mar 2022
Cited by 27 | Viewed by 4606
Abstract
Unmanned aerial vehicles (UAVs) (also known as drones) are aircraft that do not require the presence of a human pilot to fly. UAVs can be controlled remotely by a human operator or autonomously by onboard computer systems. UAVs have many military uses, including [...] Read more.
Unmanned aerial vehicles (UAVs) (also known as drones) are aircraft that do not require the presence of a human pilot to fly. UAVs can be controlled remotely by a human operator or autonomously by onboard computer systems. UAVs have many military uses, including battlefield surveillance, effective target tracking and engagement in air-to-ground warfare, and situational awareness in challenging circumstances. They also offer a distinct advantage in various applications such as forest fire monitoring and surveillance. Surveillance systems are developed using advanced technologies in the modern era of communications and networks. As a result, UAVs require enhancements to control and manage systems efficiently. Network security is a critical concern with respect to UAVs due to the risk of surveillance information theft and physical misuse. Although several new tools have been introduced to secure networks, attackers can use more advanced methods to get into a UAV network and create problems that pose an organizational threat to the entire system. Security mechanisms also reduce the performance of systems because some restrictive measures prevent users from accessing specific resources, but a few techniques and tools have overcome the problem of performance reduction in various scenarios. There are many types of attacks, i.e., denial of service attacks (DOS), distributed denial of service attacks (DDOS), address resolution protocol (ARP) spoofing, sniffing, etc., that make it challenging to maintain a UAV network. This research paper proposes a lightweight challenge-response authentication that can overcome the previously mentioned problems. As security is provided by utilizing a minimum number of bits in memory, this technique offers the same security features while using fewer network resources, low computing resources, and low power consumption. Full article
Show Figures

Figure 1

26 pages, 1257 KB  
Review
Mitigating ARP Cache Poisoning Attack in Software-Defined Networking (SDN): A Survey
by Zawar Shah and Steve Cosgrove
Electronics 2019, 8(10), 1095; https://doi.org/10.3390/electronics8101095 - 28 Sep 2019
Cited by 21 | Viewed by 14186
Abstract
Address Resolution Protocol (ARP) is a widely used protocol that provides a mapping of Internet Protocol (IP) addresses to Media Access Control (MAC) addresses in local area networks. This protocol suffers from many spoofing attacks because of its stateless nature and lack of [...] Read more.
Address Resolution Protocol (ARP) is a widely used protocol that provides a mapping of Internet Protocol (IP) addresses to Media Access Control (MAC) addresses in local area networks. This protocol suffers from many spoofing attacks because of its stateless nature and lack of authentication. One such spoofing attack is the ARP Cache Poisoning attack, in which attackers poison the cache of hosts on the network by sending spoofed ARP requests and replies. Detection and mitigation of ARP Cache Poisoning attack is important as this attack can be used by attackers to further launch Denial of Service (DoS) and Man-In-The Middle (MITM) attacks. As with traditional networks, an ARP Cache Poisoning attack is also a serious concern in Software Defined Networking (SDN) and consequently, many solutions are proposed in the literature to mitigate this attack. In this paper, a detailed survey on various solutions to mitigate ARP Cache Poisoning attack in SDN is carried out. In this survey, various solutions are classified into three categories: Flow Graph based solutions; Traffic Patterns based solutions; IP-MAC Address Bindings based solutions. All these solutions are critically evaluated in terms of their working principles, advantages and shortcomings. Another important feature of this survey is to compare various solutions with respect to different performance metrics, e.g., attack detection time, ARP response time, calculation of delay at the Controller etc. In addition, future research directions are also presented in this survey that can be explored by other researchers to propose better solutions to mitigate the ARP Cache Poisoning attack in SDN. Full article
(This article belongs to the Special Issue State-of-the-Art of Cyber Security)
Show Figures

Figure 1

19 pages, 2788 KB  
Article
Anomalous Traffic Detection and Self-Similarity Analysis in the Environment of ATMSim
by Hae-Duck J. Jeong, WonHwi Ahn, Hyeonggeun Kim and Jong-Suk R. Lee
Cryptography 2017, 1(3), 24; https://doi.org/10.3390/cryptography1030024 - 12 Dec 2017
Cited by 2 | Viewed by 9551
Abstract
Internet utilisation has steadily increased, predominantly due to the rapid recent development of information and communication networks and the widespread distribution of smartphones. As a result of this increase in Internet consumption, various types of services, including web services, social networking services (SNS), [...] Read more.
Internet utilisation has steadily increased, predominantly due to the rapid recent development of information and communication networks and the widespread distribution of smartphones. As a result of this increase in Internet consumption, various types of services, including web services, social networking services (SNS), Internet banking, and remote processing systems have been created. These services have significantly enhanced global quality of life. However, as a negative side-effect of this rapid development, serious information security problems have also surfaced, which has led to serious to Internet privacy invasions and network attacks. In an attempt to contribute to the process of addressing these problems, this paper proposes a process to detect anomalous traffic using self-similarity analysis in the Anomaly Teletraffic detection Measurement analysis Simulator (ATMSim) environment as a research method. Simulations were performed to measure normal and anomalous traffic. First, normal traffic for each attack, including the Address Resolution Protocol (ARP) and distributed denial-of-service (DDoS) was measured for 48 h over 10 iterations. Hadoop was used to facilitate processing of the large amount of collected data, after which MapReduce was utilised after storing the data in the Hadoop Distributed File System (HDFS). A new platform on Hadoop, the detection system ATMSim, was used to identify anomalous traffic after which a comparative analysis of the normal and anomalous traffic was performed through a self-similarity analysis. There were four categories of collected traffic that were divided according to the attack methods used: normal local area network (LAN) traffic, DDoS attack, and ARP spoofing, as well as DDoS and ARP attack. ATMSim, the anomaly traffic detection system, was used to determine if real attacks could be identified effectively. To achieve this, the ATMSim was used in simulations for each scenario to test its ability to distinguish between normal and anomalous traffic. The graphic and quantitative analyses in this study, based on the self-similarity estimation for the four different traffic types, showed a burstiness phenomenon when anomalous traffic occurred and self-similarity values were high. This differed significantly from the results obtained when normal traffic, such as LAN traffic, occurred. In further studies, this anomaly detection approach can be utilised with biologically inspired techniques that can predict behaviour, such as the artificial neural network (ANN) or fuzzy approach. Full article
(This article belongs to the Special Issue Biometric and Bio-inspired Approaches in Cryptography)
Show Figures

Figure 1

Back to TopTop