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Abstract: Industry Revolution 4.0 connects the Internet of Things (IoT) resource-constrained devices
to Smart Factory solutions and delivers insights. As a result, a complex and dynamic network
with a vulnerability inherited from the Internet becomes an attractive target for hackers to attack
critical infrastructures. Therefore, this paper selects three potential attacks with the evaluation of the
protections, namely (1) distributed denial of service (DDoS), (2) address resolution protocol (ARP)
spoofing, and (3) Internet protocol (IP) fragmentation attacks. In the DDoS protection, the F1-score,
accuracy, precision, and recall of the four-feature random forest with principal component analysis
(RFPCA) model are 95.65%, 97%, 97.06%, and 94.29%, respectively. In the ARP spoofing, a batch
processing method adopts the entropy calculated in the 20 s window with sensitivity to network
abnormalities detection of various ARP spoofing scenarios involving victims’ traffic. The detected
attacker’s MAC address is inserted in the block list to filter malicious traffic. The proposed protection
in the IP fragmentation attack is implementing one-time code (OTC) and timestamp fields in the
packet header. The simulation shows that the method detected 160 fake fragments from attackers
among 2040 fragments.

Keywords: security threat; Internet of Things; smart factory; Industry 4.0; DDoS; ARP spoofing;
IP fragmentation attack

1. Introduction

Industry 4.0, called the Smart Factory, shown in Figure 1, is the phase of digitizing
the manufacturing sector, which has been accelerated by exponential technologies and
has vertical and horizontal integration across factory plants and supply chains [1]. Unlike
the conventional sensor network, the IoT network is becoming more complex with het-
erogeneity that increases the connectivity and adopts standard communication protocols
which link the physical components and receive commands through the Internet [2]. The
revolution of Industry 4.0 has focused on flexibility and demand for customized prod-
ucts, and workshops are adaptive and scalable with a fast reconfiguration of machines.
Cloud computing processes and shares data between cyber-physical systems (CPSs) [3]. A
cyber-physical production system (CPPS) makes decentralized decisions in the production
system in the virtual world [4]. In the Smart Factory, data are used in learning algorithms
to support real-time intelligent and autonomously controlled systems [5,6].

The highly Interconnected and dynamically distributed environments also led to a
high complexity that opened opportunities for attackers [7]. The security of the Smart
Factory becomes even more important with the adoption of IoT in critical applications
that can be diverted into a harmful situation to the entire system. In common practice,
the security of the Cloud is handled only partially by service providers, mainly focusing
on facilities and data centers [8]. At the same time, the customer needs to pay attention
to interfaces and data that the customer might forget. A similar breach in one machine,

Systems 2023, 11, 211. https:/ /doi.org/10.3390/systems11040211

https:/ /www.mdpi.com/journal/systems


https://doi.org/10.3390/systems11040211
https://doi.org/10.3390/systems11040211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-2416-5777
https://doi.org/10.3390/systems11040211
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11040211?type=check_update&version=1

Systems 2023, 11, 211

20f17

network, or plant can persist in another as the concept of “digital production” shares the
same Cloud settings [9]. There are unclear policies and best practices for a manufacturer to
build IoT, such as protection with a strong password which can suffer from a brute-force
attack [10]. The characteristics of sensor nodes that are low power, limited processing, and
have memory constraints have prevented them from being embedded with secure and
advanced protection algorithms. The IoT environment needs more security attention to
avoid issues caused by misconfiguration [11]. For example, a UPnP (universal plug and
play) service that automatically connects the local nodes may be misused by an attacker
and should be restricted or disabled. Physical access to the network with a USB plug-in is
simple and most straightforward for a hacker to penetrate the network system.
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Figure 1. A framework of a Smart Factory.

IoT runs software that requires security patches [12] and is sometimes late in reaching
the devices through the Internet connection [13]. The attacker can exploit the zero-day
attack on these devices by extracting relevant details from the Shodan search engine.
Another security breach can occur when the updates come from an unauthorized or
unauthenticated third-party application, even if the devices run in a closed-loop system.
While in sensor networks, there are various supports for wireless communication such as
radio frequency identification (RFID), Z-wave, and near-field communication (NFC), the
mainstream connectivity options are WiFi and Bluetooth, which use the same frequency.
These wireless signals are susceptible to interception, thus creating a vulnerability for the
attacker to capture and exploit the traffic in the IoT network.

2. Related Works

The attacker launches the attack by stealing confidential data and bringing down
critical infrastructure [13]. In the attack, the network can be redirected and mislead the
internal nodes without knowing they are communicating with the intruders. By the time
an active attack is launched, it is often too late and extensive resources are required to
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recover from the disastrous incident. The distributed denial of service (DDoS) attack aims
to prevent the server from responding to a legitimate request using the easily exploited
vulnerabilities of IoT devices [14]. The attack floods the target with excessive data lead-
ing to bandwidth depletion, resource exhaustion, and throughput downgrade [15]. The
highly intensive attack requires many infected or compromised devices that turn into
a botnet and are synchronized to launch the attack simultaneously, which is difficult to
defend against [16].

The merge of wireless sensor networks (WSNs) with IoT technology can cause a lack of
defenses which previously existed in the unattended nature of the networks [17]. Malware
such as Mirai [18] targets IoT networks. Then the infected devices delete the binary file
leaving itself undetected [19]. In addition, it is relatively easy to infect vulnerable devices
if the breach remains even after several reboots. The compromised devices may send a
small amount of data, and when it accumulates at the gateway it can become enormous.
The situation can be escalated if the infected gateway participates in the flooding process,
which is an Internet gateway with a larger bandwidth than the sensor [20]. The research
evaluates the effectiveness of detection through learning-based algorithms to eliminate
damage [21]. However, those classifiers require the model’s training from the large dataset
prepared from the network traffic of the IoT environment. IoT networks are heterogeneous
and support sensor nodes with different sending behavior [22]. The dataset must be free
from error and misleading records that generate inaccurate predictions. Some common
classifiers used to detect DDoS are support vector machine (SVM) [23], K-nearest neighbors
(KNN) [24], and random forest (RF) [25]. Those classifiers depend on datasets to establish
the boundary between classes and make prediction outcomes.

ARP stands for address resolution protocol, a standard and common protocol that
operates at the data link layer invoked in a local node to prepare for communication. To
begin communication, the node must look for the ARP table to retrieve MAC mapping
to send a packet. However, several challenges in the protocol are faced due to a lack of a
reliable procedure to transmit the ARP packet. The receiver accepts all the ARP packets
with their address and processes them in the ARP cache. The attacker can apply various
scenarios using ARP request, ARP reply, or both. It can hide the attack in a high ARP
traffic volume, making it difficult to detect. As in typical ARP spoofing, this fit for the
attacker starts with screening the local network to acquire the valid node’s IP addresses
and learn about the topology. Another problem is that the attack can be adopted and
followed with a denial of service (DoS) or man-in-the-middle (MITM) attack. ARP spoofing,
sometimes referred to as ARP poisoning, has a timeout period in the ARP entries that
requires the attacker to continuously send the spoofed ARP packet to stay connected
with the targets. Protection for ARP spoofing with static ARP entries may increase the
administrative overhead and requires higher processing power. Packet filtering is another
method adopted in ARP protection that analyzes each ARP packet and filters those that are
malicious. The authors of [26] propose detection based on windows by packet count and
show the effectiveness of handling ARP spoofing. Another method of applying detection is
checking every ARP packet header [27].

IoT integrates data with other IT assets to deliver various services and applications,
which can be challenging for maintaining up-to-date physical parts [28]. Some of these
IoT solutions, which are more awkward, require a complex setup for firmware patches.
These are cases where communication from the server involves extensive, transmitted
data, such as firmware updates, upgrades, or patches. The IoT has to be reprogrammed
over-the-air (OTA), and large packets must be fragmented to send to the IoT network.
The packet header identifier is an essential detail in a fragment which can be guessed
through some of the methods acquired by the attacker, even with the TCP connection [29].
Meanwhile, avoiding fragmentation vulnerabilities by simply preventing fragmentation
can cost more transmission sessions [30]. A study shows that the TCP protocol does not
prevent an attack from adversaries that send a spoofed ICMP, and the source can be tricked
into fragmenting TCP segments [31]. With the exposition of packet header identifiers in a
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vast number of transmissions, the attacker can carefully craft a fragment to attack, such as
causing misassociation and leading to unsuccessful firmware updates or the installation of
malicious code.

3. Proposed Protection Mechanism
3.1. Random Forest

Random forest [32] is a machine learning algorithm that adopts the theory of many
decision trees with the bagging technique. Each of the trees is called a forest and are not
correlated with one another. Randomly selected attributes split the nodes in the decision
tree without pruning. Additionally, the bootstrap method uses sampling with a replacement
which can compensate for the situation of insufficient data to train the model. Figure 2
shows the prediction based on the average result of all the forests. Using the maximum
voting technique, there is a high probability of getting the correct answers.

Dataset
Decision Tree Decision Tree Decizion Tree
¥ ¥ ¥
Prediction Prediction Prediction

Majonty Vote

Figure 2. Random forest algorithm.

3.2. Principal Component Analysis

Principal component analysis (PCA) [33] is a technique for dimensionality reduction.
It converts the original data into uncorrelated principal components (PCs) and arranges
them from highest to lowest variance. The result for PCA is to transform the dataset into
PCs with the highest possible variances. Thus, the first selected PC contributes the highest
variance of the data.
The eigenvector U of matrix A and the A which is the scalar eigenvalue for matrix A
(square matrix) as in Equation (1):
AU = UA (1)
Equation (2) is the root of the characteristic equation, which is solved to obtain the

value of A:
det(A —AI) = 0, )

3.3. Entropy-Based Detection

Shannon’s entropy [34,35] is an information theory that measures randomness and
distribution. This method effectively detects an attack on networks, considering the massive
traffic generated. When the attack occurs in the network, data collection and features can
easily capture issues by deriving the abnormal behavior in the context. Some features used
for entropy computation are source IP, destination IP, and protocol.

ARP Spoofing Analysis

H(X) = =Y, p(x;)log,p(x), @3)
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Algorithm 1 uses entropy (H) shown in Equation (3) to detect abnormality in the
local network. The entropy in the ARP spoofing mainly falls to 1.3 [34]. In ARP spoofing
activities, the entropy can achieve a high value, but not too high, compared to the normal
ARP process. The threshold set by entropy can detect the abnormality in ARP traffic, which
triggers detection and protection.

Let S be a set of ARP packets collected throughout the simulation, grouped by each
time window W. The x; is the number of packets sent from a source. To calculate p(x;), x;
is divided by a denominator of the total number of ARP packets at the time window or
timeslot i. The b represents base 2 of a log.

The ARP traffic is collected at each time window and compared with the predefined
threshold. The feature that applies in the context is using the sender’s MAC address.
The entropy property shows the underlying probability distribution and describes the
randomness of the flows in the observation point or location, in this case, the switch or
access point (AP). The MAC address is selected to calculate the entropy of each time
window. This feature shows the robustness of identifying the attacker’s behaviors correctly.
If the attacker begins to screen the local network for all active IP addresses, this increases
the randomness of the destination IP address. In the case of this paper, the sender’s MAC
address can capture many ARP packets in the network traffic from the attacker.

Algorithm 1 Proposed ARP Spoofing Detect and Protect Based on Entropy

log_monitor_ip_mac: dictionary to keep I>-MAC mapping
Input: Time Window slot (W1. .. Wn) =S, Attrl as sender MAC
Output:

Set Entropy threshold «+ 1.35

for all Wi € Sdo

/ / get entropy of the ARP traffic in current window slot
curEntropyAttrl <— COMPUTE entropy of sender MAC
if (APi(MAC) in capture MAC address)

then

filter AttackerTraffic()

end if

/ /raise alarm

if (curEntropyAttrl < Entropy threshold)

then

ARP List <— UNIQUE IP, MAC from a high volume of ARP packet’s in Wi
/ / get the Sender IP, MAC in ARP

MAC <~ MAC in ARP List

IP < IP in ARP List

length <— COUNT ARP List

if (length > 1)/ /duplicate address found

then

detect spoofing < True

else

match < matchMacTolp (IP, MAC, log_monitor_ip_mac)
if('match) then

detect spoofing + True

end if

end if

if (detect spoofing = True)

then

/ /'keep the mac address in a list




Systems 2023, 11, 211

60of 17

Algorithm 1 Count.

UPDATE MAC in capture mac address

else

/ /'keep the IP-MAC in dictionary for further validation
UPDATE IP, MAC in log_monitor_ip_mac

end if

end if

3.4. One-Time Code and Timestamp

The packet header identifier is vital on the Internet to a similar group of fragments
and forms the original packets at the destination node.

The proposed mechanism is adding a timestamp and one-time code (OTC) in the
fragment to protect against the fragmentation attack caused by a predictable identifier. The
OTC and timestamp consume the option fields with a maximum of 40 bytes. The OTC is a
number randomly generated parallel to the timestamp. With the additional fields added to
the packet header, the attacker cannot force the reassembly of the fragments with only the
source IP, destination IP, identification, and protocols. The following diagram shows the
implementation of OTC and timestamp in Figure 3.

Header
Version( TOS/DSCP(6 | ECN(
Length Total Length(16 bits)
4 bit) bits) 2 bits)
(4 bits)
Dl M
Identification (16 bits) 0 el E Fragment offset (13 bits)
TTL(8 bits) Protocol(8 bits) Header Checksum (16 bits)
Source IP ( 32 bits)
Destination IP (32 bits)
(option field) timestamp(32 bits)
(option field) OTC (16 bits)

Figure 3. Proposed IPv4 header to include timestamp and OTC as an enhancement for fragmentation
attack (misassociation) protection.

Type of service (TOS) or differentiated service code point (DSCP) specifies the different
services like Voice over IP (VOIP). If the explicit congestion notification (ECN) is set, the
system can send the notification of network congestion between endpoints, preventing
packet drop. The Don’t Fragment (DF) field allows for the discovery of the path of the
maximum transmission unit (MTU) and prevents fragmentation between communication
nodes. When fragmentation occurs, all of the fragments except the last one will have the
More Fragment (MF) field set to true, indicating that more fragments are coming.

3.5. Dataset

The dataset is prepared by randomly generating data points with features stated in
Table 1. This record simulates the DDoS scenarios. The classifiers use this dataset to train a
model for predicting potential attackers.
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Table 1. Configuration of DDoS simulation data for attack and benign.

Node Source IP Destination IP (Server) Source Port Destination Port Bytes (Sent)

Legitimate (65 nodes)

Unique 1 Random

Highly random (port

no. 80-11,000) Varies

Attacker (35 nodes)

Unique 1 Random

Random (with port no

3000-11,000) Similar

4. Simulations and Results

The hardware used to perform the analysis is a computer with Intel(R) Core(TM)
i5-6200U CPU @ 2.30 GHz 2.40 GHz, 12 GB RAM with Windows 10 Home as the operating
system. Simulation software is OMNeT++ [36] with an INET framework [37] as a model
library. Execution of protection codes for DDoS and ARP spoofing was conducted in
Python 3.8.8 with Spyder (Scientific Python Development Environment) IDE (integrated
development environment). The customization in the INET framework for IP fragmentation
protection code is needed to use the proposed packet format.

4.1. DDoS

DDoS simulates the infected devices, called bots, to synchronize the attack to target
the server. The data are passed from the infected devices to a computer or gateway at each
local network. Excessive data are flooding the server-side router, thus causing degradation
of the services. The detection and protection mechanism are implemented in the simulation
to recover the traffic. The models are evaluated based on predefined formulas described in
the next section.

4.1.1. Simulation Analysis

The dataset comprises 65 percent benign traffic and 35 percent attack traffic generated
from 100 nodes. The benign traffic consists of TCP and UDP data, and attack traffic is
all from UDP data. Protocol, source port, destination port, and byte are features shown
in Table 2. All of them are from numerical data types. The dataset is prepared based on
the following mentioned criteria. First, attributes or features should not have missing or
defective values. Second, attributes or features are verified with a correlation matrix. This
method ensures that no highly correlated features (<0.8) exist among the features, which
can prevent the curse of dimensionality in a model’s training process. Based on Figure 4,
the highest correlation among independent attributes is between the protocol and byte,
with 0.326. Third, features of data in the dataset are standardized by performing feature
scaling. This method avoids the features with a higher range of values dominating the
classifiers’ model.

Table 2. Dataset attributes.

No.

Field Name

Field Name (Dataset) Data Type Description

W =

Protocol
Source port
Destination port
Bytes

Protocol Numerical Protocol id represent TCP/UDP
Srcport Numerical Source port from sender (incoming)
Destport Numerical Destination port (incoming)
Bytes Numerical Data bytes (incoming)
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byte destport srcport protocol

isddos

-1.0

_ -0.8
0.6

0.4

0.2

protocol srcport destport byte isddos

Figure 4. Correlation matrix of the dataset attributes.

Table 3 shows the classifiers in comparison. The simulation configuration is shown

in Table 4.

Table 3. Papers referring to DDoS.

Method Authors Reference
K.M. Sudar, M. Beulah, P. Deepalakshmi, P.
SVM Nagaraj and P. Chinnasamy 23]
KNN S. Dong, and M. Sarem [24]
RF J. Pei, Y. Chen, and W. Ji [25]
Table 4. DDoS simulation parameters.
Parameter Value
No. of legitimate nodes (Sender/gateway) 65
No. of attacker (Gateway) 35
No. of router (Server-side) 1
No. of Server 1
Attacker target Server
Simulation time 1s
Attack duration 0.5-0.6s
Sending interval (Attackers) 0.0001 s
Sending interval (Legitimate node) UDP =0.01-0.025; TCP=0.3 s

Below are predefined definitions.
TP = true positive, TN = true negative, FP = false positive, FN = false negative
The formulas adopted in the evaluation of classifiers are shown below.

Precision = TP /(TP + FP), 4)
Recall = TP/(TP + EN), (5)

Accuracy = (TP + TN)/(TP + TN + FP + EN), (6)
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F1-Score (a.k.a. F-Score) = 2 x (Precision x Recall)/(Precision + Recall),

4.1.2. Evaluation and Discussion

Precision and recall calculations are shown in Equations (4) and (5), respectively. The
dataset was split into 75 percent for the training dataset and the remaining 25 percent for
the test dataset. The classifiers’ performances are related to the convergence model to make
a DDoS classification. Based on Table 5, the added features can improve the prediction
in terms of accuracy. Figure 5 shows the Fl-scores of each classifier’s predictions based
on two, three, and four features. RF, KNN, and SVM classifiers have started with lower
F1-scores in the two features model, which adopted protocol and source port to train a
model. The scores increased in the three features model, which included the destination
port. RFPCA prediction achieved a 95.65% F1-score and 97% accuracy using the dataset

with four features to train the model.

Table 5. Comparison results of classifiers.

RFPCA RF KNN SVM
F1 91.43 83.33 69.7 74.67
Two f Accuracy 94 88 80 81
Wo features Precision 91.43 81.08 742 70
Recall 91.43 85.71 65.71 80
F1 91.18 89.55 81.01 79.02
Three Accuracy 94 93 85 83
ree features Precision 93.94 93.75 72.72 69.57
Recall 88.57 85.71 91.43 91.43
F1 95.65 91.18 82.67 80.52
Four f Accuracy 97 94 87 85
our features Precision 97.06 93.94 77.5 73.81
Recall 94.29 88.57 88.57 88.57

100

80

60

F1-Score

Two
features

Three
features

Four
features

Number of features selected in models

Figure 5. Fl-score comparison of classifiers.
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The same models in Figure 5 are applied in the DDoS classification problem presented
in the simulation shown in Section 4.1.1. The entropy highlighted the different detection
rates by the classifiers in the traffic analysis. Based on the model performance, training
more features led to a more accurate model and may take more computation time. In
Figures 6a, 7a and 8a, the entropy values were maintained between 5.43-5.57 in 0-0.5 s
before the attack. The attack launched in 0.5-0.6 s, and entropy dropped to lower values
showing that the attack was concentrated in the network and differentiating the detection
rates between classifiers.
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(a) (b)

Figure 6. Comparison of detecting attacks and protecting networks of different models trained on
two features. (a) Entropy-based analysis. (b) Logyg results with different models’ implementation.
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Figure 7. Comparison of detecting attacks and protecting networks of different models trained on
three features. (a) Entropy-based analysis. (b) Logo results with different models” implementation.
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Figure 8. Comparison of detecting attacks and protecting networks of different models trained on
four features. (a) Entropy-based analysis. (b) Logig results with different models” implementation.

According to Figures 6b, 7b and 8b, the high detection rates prevented the attack
traffic from overwhelming the network. Before the attack, traffic was maintained between
2.15-2.35. In Figure 8b, RFPCA shows a quick recovery of the network back to the normal
stage, which dropped to 3.08 at 0.6 s and was maintained between 2.32-2.34 after 0.6 s.

Based on the overall results, the recall rate contributed to classifying the attack traffic.
High detection rate is essential to capturing an attack, while good classification models can
protect and reduce maintenance costs. The high F1-score shows an overall performance
ability to correctly classify the DDoS in an imbalanced dataset, which seeks to balance
precision and recall. Both RFPCA and RF models trained using four features have a good
classification model. RFPCA, which performed the PCA before the training, can maintain
high variances of the sample features and lead to the overall prediction performance.

4.2. ARP Spoofing

ARP spoofing simulates the attack in the local network, which can be either wired or
wireless communication. Various attack scenarios are adopted to compare the effectiveness
of the detection and protection mechanisms.

4.2.1. Simulation Analysis

The simulation has three attack modes, as shown in Table 6, implemented with the
configuration in Table 7. Table 8 shows the different methods of protection. The proposed
method sets the entropy threshold to H < 1.35. In a typical ARP spoofing, the attacker
screens the local network to identify the active IP in the local network and the attack
follows based on the selected attack mode. The system identifies the ARP spoofing that has
occurred, triggers the protection algorithm, and inserts rules to filter the ARP packet based
on the attacker’s MAC.

Table 6. ARP spoofing attack mode.

Attack Mode Description
Mode-1 The attacker sends spoofed ARP requests to the router and Node03.
Mode-2 The attacker sends spoofed ARP replies, mimicking a gratuitous ARP
variant to the router and Node03.
Mode-3 The attacker replies to a legitimate ARP request with spoofed ARP

messages to Node03 and then sends spoofed ARP requests to the router.

Note: The attacker sends the spoofed ARP packets continuously during the attack session to maintain the
connection between target nodes.
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Table 7. ARP spoofing simulation parameter.

Parameter Value
No. of attackers 1
No. nodes in local network (with router) 10
No. of servers 1
Attacker target 2 nodes (Router and Node03)
Simulation time 100 s
Attack session 20-70s
ARP cache timeout 30s

Table 8. Comparison of detection and protection.

Method Description

ARP packets are grouped by time window. The protection algorithm
Proposed method is triggered to check for any I>-MAC mapping mismatch or duplicate
IP showing the attacker’s address.

Each window consists of a maximum of 260 packets. In the separate
window, if less than 1/3 of the ARP requests belong to the ARP
replies triggered in bulk, then the source address in the ARP reply is
the attacker’s address.

Spoofed ARP, a variant of gratuitous ARP, is detected if the
destination address specifies the destination node.

Method-1 [26]

Method-2 [27]

4.2.2. Evaluation and Discussion

In Figures 9a, 10a and 11a, entropy values dropped below the threshold in 0-80 s
indicating that entropy can distinguish attack traffic and regular traffic well. Local nodes
initiated the ARP processes were in a cache timeout in the 40-60 s range. Figures 9a and 11a
show that the victims were involved in the ARP process by responding to ARP requests,
and the entropy values achieved 1.22 in Figure 9a and 1.27 in Figure 11a. In the following
figures, the detection time of each method is compared with the total of ARP packets.

r B T I T T T 50 T T T T T
Ppsd. M. T A All traffic C——
2 | Threshold (H) =135 — | % 40 H I 1 2 M.l —— |
k- M2 ——
“~ m I'
Lz 1.5 F - o 30 H II ! | Pde. M, —o— |
2 & Lo
o ] < A TR
P 1f 1 % 20 .
w E— |
% I||II
0.5 H ﬂ 1 § 10} | .
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Figure 9. Mode-1 scenario in ARP spoofing. (a) Entropy of proposed method (b) The comparison
results of different types of protection in a total of 363 packets.
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Figure 10. Mode-2 scenario in ARP spoofing. (a) Entropy of proposed method (b) The comparison
results of different types of protection in a total of 341 packets.
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Figure 11. Mode-3 scenario in ARP spoofing. (a) Entropy of proposed method (b) The comparison
results of different types of protection in a total of 322 packets.

In Figure 9b, the proposed method detected ARP spoofing and blocked the malicious
traffic in 40 s. There was no action from Method-1 and Method-2, and the total ARP traffic
remained at 305 attacks out of 363 packets.

In Figure 10b, Method-2 detected the attack in 20 s. This ARP packet adopted a
gratuitous ARP variant in this attack to forge the target’s I>-MAC mapping. The proposed
method detected ARP spoofing in 40 s. Method-1 blocked the attacker at 46 s. There was a
total of 305 attacks out of 341 packets.

In Figure 11b, the attacker MAC could be identified after 45 s when the Node03
initiates an ARP request after the ARP cache timeout. Method-1 blocked the attacker at
51 s. The proposed method blocked the attacker in 60 s. There was no action reflected in
Method-2 in this case, and the attacks remained at 270 out of 322 packets.

According to the results obtained, the proposed method can detect different spoofed
ARP packets and automatically capture the suspicious address mapping matched with
the attacker.

4.3. IP Fragmentation Attack (Mis-Association)

The server routes the firmware packets through the gateway to the IoT. Data trans-
mission is subjected to limited computation and memory. The packet header identifier is
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predictable because it sends large packets to the target. The attackers launched the attack by
sending fragments with the same identity. The attack attempts to merge an attack fragment
with fragments from the server, leading to incorrect packet reassembling and the dropping
of the packet.

4.3.1. Simulation Analysis

The configuration in Table 9 shows a simulation that has implemented the OTC and
timestamp to confront and mitigate the fragmentation attack. All fragments from the
same packet should have a similar identifier, source IP, and destination IP with valid OTC
and timestamp. The validity of fragments is verified at the destination node after the
reassembly process.

Table 9. Fragmentation attack parameters of the simulation.

Parameter Value
No. target IoT 1
No. of attackers 4
Total cycle of simulation/length 40 cycle/400 s
Data/cycle (Firmware size) 4 kB
Protection One-time code (OTC) and timestamp

4.3.2. Evaluation and Discussion

Based on Figure 12, the target IoT has received all the fragments sent from the gateway
and attackers. Figure 13 shows that the destination IoT (target) detected all attackers’
fragments. The identifier plays a vital role in Internet-based communication, and the
IoT can connect to a vulnerable WiFi network for communication. Attackers employed a
method to randomly spot the identifier values by sending many fragments into the network
to increase the chances of a successful attack on the IoT but have failed in all the attempts
based on the simulation. The protection of OTC and timestamp has created difficulty for
attackers to launch a successful IP fragmentation. Without any success of the fragments
used by attackers, the destination node has received all the data correctly.

Application Layer Data
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160,000 S \\\ o
140,000 .
120,000 .
« 100,000 - |
g4
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Figure 12. Total bytes from sender to receiver (end-to-end).
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Figure 13. Fragment count and statuses.

In typical transmission, the data travel from different networks with different MTU
sizes and cause fragmentation, especially when a large amount of data are involved. Only
the first fragment carried the high-layer information essential for routing and network
functionalities, which may lead to the retransmission of the entire packet, if lost. A general
practice to avoid fragmentation in the first place requires additional transmission, and
a TCP connection can cause an attacker to adopt alternative methods to attack. If the
system can identify the attack immediately, the error may be corrected with a different
transmission. In the worst cases, in which the attacker has launched maliciously, it can
open a security breach in the network. Thus, protection for the packet header identifier
contributes to the secure transmission of fragments with the identifier, which the operating
system implemented straightforwardly, and the secure transmission is now protected.

5. Conclusions

In this paper, the proposed protection for DDoS, ARP spoofing, and IP fragmentation
attacks are presented and discussed. Cybersecurity threats come from internal and external
sources, and the attacks can be stealthy. These attacks are a common yet severe problem,
and once they occur, they can cause massive damage to the infrastructure and loss to the
organization. Several solutions have been proposed to solve the problems, each with advan-
tages and disadvantages, and the detection rates and accuracy are varied. The proposed RF
classifier with PCA can train a model that copes with dynamic environments and delivers
good protection. The protection in ARP spoofing captures suspicious address mapping
and is adaptable to different spoofed ARP packets. The protection of the packet header
identifier solves the security breach in the IP-based communication, and the destination
node can detect the fake fragments without impacting the reassembly process. The system
should have sufficient protection capable of detecting the attack at the earliest chance, if
not immediately, without impacting the organization’s productivity.
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