Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,024)

Search Parameters:
Keywords = AHP approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2141 KiB  
Article
Enhancing Efficiency in Sustainable IoT Enterprises: Modeling Indicators Using Pythagorean Fuzzy and Interval Grey Approaches
by Mimica R. Milošević, Miloš M. Nikolić, Dušan M. Milošević and Violeta Dimić
Sustainability 2025, 17(15), 7143; https://doi.org/10.3390/su17157143 - 6 Aug 2025
Abstract
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many [...] Read more.
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many IoT-related products, challenges pertaining to their effective implementation, particularly the lack of knowledge and confidence about security, must be addressed. To provide IoT-based enterprises with a platform for efficiency and sustainability, this study aims to identify the critical elements that influence the growth of a successful company integrated with an IoT system. This study proposes a decision support tool that evaluates the influential features of IoT using the Pythagorean Fuzzy and Interval Grey approaches within the Analytical Hierarchy Process (AHP). This study demonstrates that security, value, and connectivity are more critical than telepresence and intelligence indicators. When both strategies are used, market demand and information privacy become significant indicators. Applying the Pythagorean Fuzzy approach enables the identification of sensor networks, authorization, market demand, and data management in terms of importance. The application of the Interval Grey approach underscores the importance of data management, particularly in sensor networks. The indicators that were finally ranked are compared to obtain a good coefficient of agreement. These findings offer practical insights for promoting sustainability in enterprise operations by optimizing IoT infrastructure and decision-making processes. Full article
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

30 pages, 4529 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL- Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 - 4 Aug 2025
Viewed by 118
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
29 pages, 14336 KiB  
Article
Geospatial Mudflow Risk Modeling: Integration of MCDA and RAMMS
by Ainur Mussina, Assel Abdullayeva, Victor Blagovechshenskiy, Sandugash Ranova, Zhixiong Zeng, Aidana Kamalbekova and Ulzhan Aldabergen
Water 2025, 17(15), 2316; https://doi.org/10.3390/w17152316 - 4 Aug 2025
Viewed by 175
Abstract
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial [...] Read more.
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial assessment of mudflow hazard and susceptibility using GIS technologies and MCDA. The key condition for evaluating mudflow hazard is the identification of factors influencing the formation of mudflows. The susceptibility assessment was based on viewing the area as an object of spatial and functional analysis, enabling determination of its susceptibility to mudflow impacts across geomorphological zones: initiation, transformation, and accumulation. Relevant criteria were selected for analysis, each assigned weights based on expert judgment and the Analytic Hierarchy Process (AHP). The results include maps of potential mudflow hazard and susceptibility, showing areas of hazard occurrence and risk impact zones within the Talgar River basin. According to the mudflow hazard map, more than 50% of the basin area is classified as having a moderate hazard level, while 28.4% is subject to high hazard, and only 1.8% falls under the very high hazard category. The remaining areas are categorized as very low (4.1%) and low (14.7%) hazard zones. In terms of susceptibility to mudflows, 40.1% of the territory is exposed to a high level of susceptibility, 35.6% to a moderate level, and 5.5% to a very high level. The remaining areas are classified as very low (1.8%) and low (15.6%) susceptibility zones. The predictive performance was evaluated through Receiver Operating Characteristic (ROC) curves, and the Area Under the Curve (AUC) value of the mudflow hazard assessment is 0.86, which indicates good adaptability and relatively high accuracy, while the AUC value for assessing the susceptibility of the territory is 0.71, which means that the accuracy of assessing the susceptibility of territories to mudflows is within the acceptable level of model accuracy. To refine the spatial risk assessment, mudflow modeling was conducted under three scenarios of glacial-moraine lake outburst using the RAMMS model. For each scenario, key flow parameters—height and velocity—were identified, forming the basis for classification of zones by impact intensity. The integration of MCDA and RAMMS results produced a final mudflow risk map reflecting both the likelihood of occurrence and the extent of potential damage. The presented approach demonstrates the effectiveness of combining GIS analysis, MCDA, and physically-based modeling for comprehensive natural hazard assessment and can be applied to other mountainous regions with high mudflow activity. Full article
Show Figures

Figure 1

22 pages, 6305 KiB  
Article
TOPSIS and AHP-Based Multi-Criteria Decision-Making Approach for Evaluating Redevelopment in Old Residential Projects
by Cheolheung Park, Minwook Son, Jongmyeong Kim, Byeol Kim, Yonghan Ahn and Nahyun Kwon
Sustainability 2025, 17(15), 7072; https://doi.org/10.3390/su17157072 - 4 Aug 2025
Viewed by 124
Abstract
This research aims to identify and prioritize key planning elements for the redevelopment of such housing complexes by incorporating perspectives from both experts (supply-side) and residents (demand-side). To achieve this, a hybrid multi-criteria decision-making framework was developed by integrating the Analytic Hierarchy Process [...] Read more.
This research aims to identify and prioritize key planning elements for the redevelopment of such housing complexes by incorporating perspectives from both experts (supply-side) and residents (demand-side). To achieve this, a hybrid multi-criteria decision-making framework was developed by integrating the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). A total of 25 planning elements were identified through Focus Group Interviews and organized into five domains: legal and institutional reforms, project feasibility, residential conditions, social integration, and complex design. The AHP was used to assess the relative importance of each element based on responses from 30 experts and 130 residents. The analysis revealed a clear divergence in priorities: experts emphasized feasibility and regulatory considerations, while residents prioritized livability and spatial quality. Subsequently, the TOPSIS method was applied to evaluate four real-world redevelopment cases. From the supply-side perspective, Seoul A District received the highest score (0.58), whereas from the demand-side perspective, Gyeonggi D District ranked highest (0.69), illustrating the differing priorities of stakeholders. Overall, Gyeonggi D District emerged as the most favorable option in the combined evaluation. This research contributes a structured and inclusive decision-making framework for the regeneration of public housing. By explicitly comparing and quantifying the contrasting preferences of key stakeholders, it underscores the critical need to balance technical feasibility with resident-centered values in future redevelopment initiatives. Full article
Show Figures

Figure 1

15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 - 3 Aug 2025
Viewed by 272
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 467
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

23 pages, 2227 KiB  
Article
Assessing the Systemic Impact of Heat Stress on Human Reliability in Mining Through FRAM and Hybrid Decision Models
by Ana Carolina Russo
Mining 2025, 5(3), 50; https://doi.org/10.3390/mining5030050 (registering DOI) - 1 Aug 2025
Viewed by 109
Abstract
Occupational heat stress represents an increasing challenge to safety and operational performance in underground mining, where elevated temperatures, humidity, and limited ventilation are common. This study proposes an integrated framework to analyze the systemic impact of heat stress on human reliability in mining [...] Read more.
Occupational heat stress represents an increasing challenge to safety and operational performance in underground mining, where elevated temperatures, humidity, and limited ventilation are common. This study proposes an integrated framework to analyze the systemic impact of heat stress on human reliability in mining operations. We conducted a systematic literature review to identify empirical studies addressing thermal exposure, extracting key operational functions for modeling. These functions were structured using the Functional Resonance Analysis Method (FRAM) to reveal interdependencies and performance variability. Human reliability was evaluated using Fuzzy CREAM, which quantified the degree of contextual control associated with each function. Finally, we applied the Gaussian Analytic Hierarchy Process (AHP) to prioritize functions based on thermal impact, contextual reliability, and systemic connectivity. The results showed that functions involving subjective or complex judgment, such as assessing thermal stress or identifying psychophysiological indicators, exhibited lower reliability and higher vulnerability. In contrast, monitoring and control functions based on standardized procedures were more stable and resilient. This combined approach identified critical points of systemic fragility and offers a robust decision-support tool for prioritizing thermal risk mitigation. The findings contribute to advancing the scientific understanding of heat stress impacts in mining and support the development of targeted interventions to enhance human performance and safety in extreme environments. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

20 pages, 4765 KiB  
Article
Ultrasonic EDM for External Cylindrical Surface Machining with Graphite Electrodes: Horn Design and Hybrid NSGA-II–AHP Optimization of MRR and Ra
by Van-Thanh Dinh, Thu-Quy Le, Duc-Binh Vu, Ngoc-Pi Vu and Tat-Loi Mai
Machines 2025, 13(8), 675; https://doi.org/10.3390/machines13080675 - 1 Aug 2025
Viewed by 224
Abstract
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and [...] Read more.
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and fabricated using 90CrSi material to operate effectively at a resonant frequency of 20 kHz, ensuring stable vibration transmission throughout the machining process. A Box–Behnken experimental design was employed to explore the effects of five process parameters—vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), discharge current (Ip), and servo voltage (SV)—on two key performance indicators: material removal rate (MRR) and surface roughness (Ra). The optimization process was conducted in two stages: single-objective analysis to maximize MRR while ensuring Ra < 4 µm, followed by a hybrid multi-objective approach combining NSGA-II and the Analytic Hierarchy Process (AHP). The optimal solution achieved a high MRR of 9.28 g/h while maintaining Ra below the critical surface finish threshold, thus meeting the practical requirements for punch surface quality. The findings confirm the effectiveness of the proposed horn design and hybrid optimization strategy, offering a new direction for enhancing productivity and surface integrity in cylindrical EDM applications using graphite electrodes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

29 pages, 1520 KiB  
Review
Methodologies for Technology Selection in an Industry 4.0 Environment: A Methodological Analysis Using ProKnow-C
by Luis Quezada, Isaias Hermosilla, Guillermo Fuertes, Astrid Oddershede, Pedro Palominos and Manuel Vargas
Technologies 2025, 13(8), 325; https://doi.org/10.3390/technologies13080325 - 31 Jul 2025
Viewed by 369
Abstract
In an ever-evolving digital environment, organizations must adopt advanced technologies for real-time big data processing to maintain their competitiveness and growth. However, selecting appropriate technologies is a challenge, particularly for small and medium-sized enterprises (SMEs). This study develops a literature review to analyze [...] Read more.
In an ever-evolving digital environment, organizations must adopt advanced technologies for real-time big data processing to maintain their competitiveness and growth. However, selecting appropriate technologies is a challenge, particularly for small and medium-sized enterprises (SMEs). This study develops a literature review to analyze the methodologies used in the selection of technologies, with a special focus on those associated with the Industry 4.0. Knowledge Development Process-Constructivist (ProKnow-C) method, which was used to build a bibliographic portfolio, examining approximately 3400 articles published between 2005 and 2024, from which 80 were selected for a detailed analysis. The main methodological contributions come from research articles, the ScienceDirect database, the Expert Systems with Applications Journal, studies conducted in Turkey, and publications from the year 2023. The results highlight the predominant use of multi-criteria techniques, emphasizing hybrid approaches that combine various decision-making methodologies. In particular, the analytic hierarchy process (AHP) and TOPSIS methods were employed in 51.25% of the analyzed cases, either individually or in combination. It is concluded that technology selection should be based on flexible and adaptive approaches tailored to the organizational context, aligning long-term strategic objectives to ensure business sustainability and success. Full article
(This article belongs to the Collection Review Papers Collection for Advanced Technologies)
Show Figures

Figure 1

21 pages, 3510 KiB  
Article
An Improved Optimal Cloud Entropy Extension Cloud Model for the Risk Assessment of Soft Rock Tunnels in Fault Fracture Zones
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(15), 2700; https://doi.org/10.3390/buildings15152700 - 31 Jul 2025
Viewed by 196
Abstract
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with [...] Read more.
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with an optimized cloud entropy extension cloud model. Initially, a comprehensive indicator system encompassing geological (surrounding rock grade, groundwater conditions, fault thickness, dip, and strike), design (excavation cross-section shape, excavation span, and tunnel cross-sectional area), and support (support stiffness, support installation timing, and construction step length) parameters is established. Subjective weights obtained via the analytic hierarchy process (AHP) are combined with objective weights calculated using the entropy, coefficient of variation, and CRITIC methods and subsequently balanced through a game theoretic approach to mitigate bias and reconcile expert judgment with data objectivity. Subsequently, the optimized cloud entropy extension cloud algorithm quantifies the fuzzy relationships between indicators and risk levels, yielding a cloud association evaluation matrix for precise classification. A case study of a representative soft rock tunnel in a fault-fractured zone validates this method’s enhanced accuracy, stability, and rationality, offering a robust tool for risk management and design decision making in complex geological settings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 890 KiB  
Article
Enhancing Cultural Sustainability in Ethnographic Museums: A Multi-Dimensional Visitor Experience Framework Based on Analytic Hierarchy Process (AHP)
by Chao Ruan, Suhui Qiu and Hang Yao
Sustainability 2025, 17(15), 6915; https://doi.org/10.3390/su17156915 - 30 Jul 2025
Viewed by 430
Abstract
This study examines how a visitor-centered approach enhances engagement, participation, and intangible heritage transmission to support cultural sustainability in ethnographic museums. We conducted online and on-site behavioral observations, questionnaire surveys, and in-depth interviews at the She Ethnic Minority Museum to identify gaps in [...] Read more.
This study examines how a visitor-centered approach enhances engagement, participation, and intangible heritage transmission to support cultural sustainability in ethnographic museums. We conducted online and on-site behavioral observations, questionnaire surveys, and in-depth interviews at the She Ethnic Minority Museum to identify gaps in current visitor experience design. We combined the Analytic Hierarchy Process (AHP) with the Contextual Model of Learning (POE) and Emotional Experience Theory (EET) to develop a hierarchical evaluation model. The model comprises one goal layer, three criterion layers (Experience, Participation, Transmission), and twelve sub-criteria, each evaluated across People, Object, and Environment dimensions. Quantitative weighting revealed that participation exerts the greatest influence, followed by transmission and experience. Findings indicate that targeted interventions promoting active participation most effectively foster emotional resonance and heritage transmission, while strategies supporting intergenerational engagement and immersive experiences also play a significant role. We recommend prioritizing small-scale, low-cost participatory initiatives and integrating online and offline community engagement to establish a participatory chain where engagement leads to meaningful experiences and sustained cultural transmission. These insights offer practical guidance for museum practitioners and policymakers seeking to enhance visitor experiences and ensure the long-term preservation and vibrancy of ethnic minority cultural heritage. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

15 pages, 1247 KiB  
Article
Prioritizing Critical Factors Affecting Occupational Safety in High-Rise Construction: A Hybrid EFA-AHP Approach
by Hai Chien Pham, Si Van-Tien Tran and Ung-Kyun Lee
Buildings 2025, 15(15), 2677; https://doi.org/10.3390/buildings15152677 - 29 Jul 2025
Viewed by 227
Abstract
High-rise construction presents heightened safety risks due to vertical complexity, spatial constraints, and workforce variability. Conventional safety management often proves insufficient, especially in rapidly urbanizing or resource-limited settings. This study proposes a hybrid methodological framework to systematically identify and prioritize the critical factors [...] Read more.
High-rise construction presents heightened safety risks due to vertical complexity, spatial constraints, and workforce variability. Conventional safety management often proves insufficient, especially in rapidly urbanizing or resource-limited settings. This study proposes a hybrid methodological framework to systematically identify and prioritize the critical factors influencing occupational safety in Vietnamese high-rise construction projects. Based on 181 valid survey responses from construction professionals, 23 observed variables were developed through extensive literature review and expert consultation. Exploratory Factor Analysis (EFA) was employed to empirically group 23 validated indicators into five key latent dimensions: (1) Safety Training and Inspection, (2) Employer’s Knowledge and Responsibility, (3) Worker’s Competence and Compliance, (4) Working Conditions and Environment, and (5) Safety Equipment and Signage. These dimensions were then structured into an Analytic Hierarchy Process (AHP) model, with pairwise comparisons conducted by industry experts to calculate consistency ratios and derive factor weights across three high-rise project case studies. The findings provide actionable insights for construction managers, safety professionals, and policymakers in developing and underdeveloped countries, supporting data-driven decision-making for safer and more sustainable urban development. Full article
(This article belongs to the Special Issue Safety Management and Occupational Health in Construction)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 448
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
Optimizing Circular Economy Choices: The Role of the Analytic Hierarchy Process
by Víctor Fernández Ocamica, David Zambrana-Vasquez and José Carlos Díaz Murillo
Sustainability 2025, 17(15), 6759; https://doi.org/10.3390/su17156759 - 24 Jul 2025
Viewed by 347
Abstract
This study investigates the application of the Analytic Hierarchy Process (AHP) as a decision-support mechanism for managing complex sustainability issues in industrial settings, specifically within the framework of circular economy principles. Focusing on a case from the brewery sector, developed under the EU [...] Read more.
This study investigates the application of the Analytic Hierarchy Process (AHP) as a decision-support mechanism for managing complex sustainability issues in industrial settings, specifically within the framework of circular economy principles. Focusing on a case from the brewery sector, developed under the EU ECOFACT initiative, this research evaluates ten distinct configurations for the must cooling process. These alternatives are assessed using environmental, economic, and technical criteria, drawing on data from life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The findings indicate that selecting an optimal scenario involves balancing trade-offs among electricity and water consumption, operational efficiency, and overall environmental impacts. Notably, Scenario 3 emerges as the most balanced option, consistently demonstrating superior performance across the primary evaluation criteria. The use of AHP in this context proves valuable by introducing structure and transparency to a multifaceted decision-making process where quantitative metrics and sustainability objectives intersect. By integrating empirical industrial data with an established multi-criteria decision approach, this study highlights both the practical utility and existing limitations of conventional AHP, particularly its diminished ability to discriminate between alternatives when their scores are closely aligned. These insights suggest that hybrid or advanced AHP methodologies may be necessary to facilitate more nuanced decision-making for circular economy transitions in industrial environments. Full article
Show Figures

Figure 1

Back to TopTop