Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = ACP (atmospheric chemical potential)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 34237 KiB  
Article
Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study
by Qijun Jiao, Qinqin Liu, Changgui Lin, Feng Jing, Jiajun Li, Yuxiang Tian, Zhenxia Zhang and Xuhui Shen
Remote Sens. 2025, 17(2), 311; https://doi.org/10.3390/rs17020311 - 16 Jan 2025
Viewed by 878
Abstract
Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution [...] Read more.
Focusing on major earthquakes (EQs; MS ≥ 7) in Western China, this study primarily analyzes the fluctuation in Atmospheric Chemical Potential (ACP) before and after the Wenchuan, Yushu, Lushan, Jiuzhaigou, and Maduo EQs via Climatological Analysis of Seismic Precursors Identification (CAPRI). The distribution of vertical ACP revealed distinct altitude-dependent characteristics. The ACP at lower atmospheric layers (100–2000 m) exhibited a high correlation, and this correlation decreased with increasing altitude. Anomalies were detected within one month prior to each of the five EQs studied, with the majority occurring 14 to 30 days before the events, followed by a few additional anomalies. The spatial distribution of anomalies is consistent with the distribution of fault zones, with noticeable fluctuation in surrounding areas. The ACP at an altitude of 200 m gave a balance between sensitivity to seismic signals and minimal surface interference and proved to be optimal for EQ monitoring in Western China. The results offer a significant reference for remote sensing studies related to EQ monitoring and the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model, thereby advancing our understanding of pre-seismic atmospheric variations in Western China. Full article
Show Figures

Figure 1

21 pages, 5166 KiB  
Article
Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses
by Masashi Hayakawa, Shinji Hirooka, Koichiro Michimoto, Stelios M. Potirakis and Yasuhide Hobara
Atmosphere 2025, 16(1), 88; https://doi.org/10.3390/atmos16010088 - 15 Jan 2025
Cited by 1 | Viewed by 1047
Abstract
The purpose of this paper is to discuss the effect of earthquake (EQ) preparation on changes in meteorological parameters. The two physical quantities of temperature (T)/relative humidity (Hum) and atmospheric chemical potential (ACP) have been investigated with the use of the Japanese meteorological [...] Read more.
The purpose of this paper is to discuss the effect of earthquake (EQ) preparation on changes in meteorological parameters. The two physical quantities of temperature (T)/relative humidity (Hum) and atmospheric chemical potential (ACP) have been investigated with the use of the Japanese meteorological “open” data of AMeDAS (Automated Meteorological Data Acquisition System), which is a very dense “ground-based” network of meteorological stations with higher temporal and spatial resolutions than the satellite remote sensing open data. In order to obtain a clearer identification of any seismogenic effect, we have used the AMeDAS station data at local midnight (LT = 01 h) and our initial target EQ was chosen to be the famous 1995 Kobe EQ of 17 January 1995 (M = 7.3). Initially, we performed conventional statistical analysis with confidence bounds and it was found that the Kobe station (very close to the EQ epicenter) exhibited conspicuous anomalies in both physical parameters on 10 January 1995, just one week before the EQ, exceeding m (mean) + 3σ (standard deviation) in T/Hum and well above m + 2σ in ACP within the short-term window of one month before and two weeks after an EQ. When looking at the whole period of over one year including the day of the EQ, in the case of T/Hum only we detected three additional extreme anomalies, except in winter, but with unknown origins. On the other hand, the anomalous peak on 10 January 1995 was the largest for ACP. Further, the spatial distributions of the anomaly intensity of the two quantities have been presented using about 40 stations to provide a further support to the close relationship of this peak with the EQ. The above statistical analysis has been compared with an analysis with recent machine/deep learning methods. We have utilized a combinational use of NARX (Nonlinear Autoregressive model with eXogenous inputs) and Long Short-Term Memory (LSTM) models, which was successful in objectively re-confirming the anomalies in both parameters on the same day prior to the EQ. The combination of these analysis results elucidates that the meteorological anomalies on 10 January 1995 are considered to be a notable precursor to the EQ. Finally, we suggest a joint examination of our two meteorological quantities for their potential use in real short-term EQ prediction, as well as in the future lithosphere–atmosphere–ionosphere coupling (LAIC) studies as the information from the bottom part of LAIC. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 13596 KiB  
Article
Atmospheric Cold Plasma as an Alternative to Chlorination in Soft Wheat Flour to Prepare High-Ratio Cakes
by Shikhadri Mahanta, Jayne Bock, Andrew Mense, Nahndi Kirk-Bradley, Joseph Awika and Janie McClurkin Moore
Foods 2024, 13(15), 2366; https://doi.org/10.3390/foods13152366 - 26 Jul 2024
Cited by 4 | Viewed by 1747
Abstract
Chlorination is a common chemical modification process of soft wheat flour to prepare high-ratio cakes. Due to safety and labeling concerns of flour chlorination, alternatives to chlorination have been researched. Atmospheric Cold Plasma (ACP) is an emerging technology which is applicable for a [...] Read more.
Chlorination is a common chemical modification process of soft wheat flour to prepare high-ratio cakes. Due to safety and labeling concerns of flour chlorination, alternatives to chlorination have been researched. Atmospheric Cold Plasma (ACP) is an emerging technology which is applicable for a wide range of food and biological components, including cereal grain products. The potential of ACP as an alternative to chlorination for high-ratio cakes has not been researched. Soft wheat flour was treated at 50 kV, 60 kV, and 70 kV each for 5, 6, and 7 min and compared to untreated and chlorinated wheat flour. High-ratio cakes were prepared from the chlorinated, treated, and untreated soft wheat flour and their properties were compared. Changes in the flour properties and the high-ratio cakes were observed at different treatment conditions. It was found that after 50 kV, 6 min, 50 kV, 7 min and 60 kV, 6 min had the better flour pasting properties, higher cake volume, and better texture properties as compared to untreated wheat flour and chlorinated wheat flour. This determines the potential of the application of ACP as an alternative to chlorination or to reduce the use of chlorination in soft wheat flour. Full article
(This article belongs to the Special Issue Impacts of Innovative Processing Technologies on Food Quality)
Show Figures

Figure 1

15 pages, 2454 KiB  
Article
Thermal Anomalies Observed during the Crete Earthquake on 27 September 2021
by Soujan Ghosh, Sudipta Sasmal, Sovan K. Maity, Stelios M. Potirakis and Masashi Hayakawa
Geosciences 2024, 14(3), 73; https://doi.org/10.3390/geosciences14030073 - 9 Mar 2024
Cited by 5 | Viewed by 2313
Abstract
This study examines the response of the thermal channel within the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism during the notable earthquake in Crete, Greece, on 27 September 2021. We analyze spatio-temporal profiles of Surface Latent Heat Flux (SLHF), Outgoing Longwave Radiation (OLR), and Atmospheric Chemical [...] Read more.
This study examines the response of the thermal channel within the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism during the notable earthquake in Crete, Greece, on 27 September 2021. We analyze spatio-temporal profiles of Surface Latent Heat Flux (SLHF), Outgoing Longwave Radiation (OLR), and Atmospheric Chemical Potential (ACP) using reanalysis data from the National Oceanic and Atmospheric Administration (NOAA) satellite. Anomalies in these parameters are computed by removing the background profile for a non-seismic condition. Our findings reveal a substantial anomalous increase in these parameters near the earthquake’s epicenter 3 to 7 days before the main shock. The implications of these observations contribute to a deeper understanding of the LAIC mechanism’s thermal channel in seismic events. Full article
Show Figures

Figure 1

15 pages, 16099 KiB  
Article
Atmosphere Critical Processes Sensing with ACP
by Sergey Pulinets and Pavel Budnikov
Atmosphere 2022, 13(11), 1920; https://doi.org/10.3390/atmos13111920 - 18 Nov 2022
Cited by 9 | Viewed by 2222
Abstract
This manuscript intends to demonstrate the diagnostic value of the previously discussed integrated parameter called atmospheric chemical potential (ACP) for tracking the atmospheric anomalies before strong earthquakes generated by the chain of processes initiated by air ionization due to radon emanation from the [...] Read more.
This manuscript intends to demonstrate the diagnostic value of the previously discussed integrated parameter called atmospheric chemical potential (ACP) for tracking the atmospheric anomalies before strong earthquakes generated by the chain of processes initiated by air ionization due to radon emanation from the Earth’s crust. For this purpose, we considered several kinds of critical processes in the atmosphere using the ACP as an indicator and diagnostic tool: hurricane dynamics, the effects of radioactive pollution (the Chernobyl NPP accident), volcano eruptions and pre-earthquake atmospheric anomalies. We established that in all cases, some unusual features of the studied critical processes were revealed to be invisible when using certain methods of monitoring. This means that the application of ACP may improve the operative monitoring of the critical processes in atmosphere. In the cases of volcano eruptions and earthquakes, ACP can be used for short-term forecast. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 1000 KiB  
Review
Dielectric Barrier Discharge for Solid Food Applications
by María Fernanda Figueroa-Pinochet, María José Castro-Alija, Brijesh Kumar Tiwari, José María Jiménez, María López-Vallecillo, María José Cao and Irene Albertos
Nutrients 2022, 14(21), 4653; https://doi.org/10.3390/nu14214653 - 3 Nov 2022
Cited by 11 | Viewed by 2751
Abstract
Atmospheric cold plasma (ACP) is a non-thermal technology whose ability to inactivate pathogenic microorganisms gives it great potential for use in the food industry as an alternative to traditional thermal methods. Multiple investigations have been reviewed in which the cold plasma is generated [...] Read more.
Atmospheric cold plasma (ACP) is a non-thermal technology whose ability to inactivate pathogenic microorganisms gives it great potential for use in the food industry as an alternative to traditional thermal methods. Multiple investigations have been reviewed in which the cold plasma is generated through a dielectric barrier discharge (DBD) type reactor, using the atmosphere of the food packaging as the working gas. The results are grouped into meats, fruits and vegetables, dairy and lastly cereals. Microbial decontamination is due to the action of the reactive species generated, which diffuse into the treated food. In some cases, the treatment has a negative impact on the quality. Before industrializing its use, alterations in colour, flavour and lipid oxidation, among others, must be reduced. Furthermore, scaling discharges up to larger regions without compromising the plasma homogeneity is still a significant difficulty. The combination of DBD with other non-thermal technologies (ultrasound, chemical compounds, magnetic field) improved both the safety and the quality of food products. DBD efficacy depends on both technological parameters (input power, gas composition and treatment time) and food intrinsic properties (surface roughness, moisture content and chemistry). Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

28 pages, 11152 KiB  
Article
Investigation of Pre-Earthquake Ionospheric and Atmospheric Disturbances for Three Large Earthquakes in Mexico
by Christina Oikonomou, Haris Haralambous, Sergey Pulinets, Aakriti Khadka, Shukra R. Paudel, Veronika Barta, Buldan Muslim, Konstantinos Kourtidis, Athanasios Karagioras and Samed İnyurt
Geosciences 2021, 11(1), 16; https://doi.org/10.3390/geosciences11010016 - 30 Dec 2020
Cited by 23 | Viewed by 7798
Abstract
The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 [...] Read more.
The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events. Full article
(This article belongs to the Special Issue Detecting Geospace Perturbations Caused by Earth)
Show Figures

Figure 1

26 pages, 9773 KiB  
Article
Tropospheric and Ionospheric Anomalies Induced by Volcanic and Saharan Dust Events as Part of Geosphere Interaction Phenomena
by Valerio Tramutoli, Francesco Marchese, Alfredo Falconieri, Carolina Filizzola, Nicola Genzano, Katsumi Hattori, Mariano Lisi, Jann-Yenq Liu, Dimitar Ouzounov, Michel Parrot, Nicola Pergola and Sergey Pulinets
Geosciences 2019, 9(4), 177; https://doi.org/10.3390/geosciences9040177 - 17 Apr 2019
Cited by 18 | Viewed by 5469
Abstract
In this work, we assessed the possible relation of ionospheric perturbations observed by Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER), Global Positioning System total electron content (GPS TEC), National Oceanic and Atmospheric Administration (NOAA)-derived outgoing longwave-Earth radiation (OLR), and atmospheric chemical [...] Read more.
In this work, we assessed the possible relation of ionospheric perturbations observed by Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER), Global Positioning System total electron content (GPS TEC), National Oceanic and Atmospheric Administration (NOAA)-derived outgoing longwave-Earth radiation (OLR), and atmospheric chemical potential (ACP) measurements, with volcanic and Saharan dust events identified by ground and satellite-based medium infrared/thermal infrared (MIR/TIR) observations. The results indicated that the Mt. Etna (Italy) volcanic activity of 2006 was probably responsible for the ionospheric perturbations revealed by DEMETER on 4 November and 6 December and by GPS TEC observations on 4 November and 12 December. This activity also affected the OLR (on 26 October; 6 and 23 November; and 2, 6, and 14 December) and ACP (on 31 October–1 November) analyses. Similarly, two massive Saharan dust episodes, detected by Robust Satellite Techniques (RST) using Spinning Enhanced Visible and Infrared Imager (SEVIRI) optical data, probably caused the ionospheric anomalies recorded, based on DEMETER and GPS TEC observations, over the Mediterranean basin in May 2008. The study confirmed the perturbing effects of volcanic and dust events on tropospheric and ionospheric parameters. Further, it demonstrated the advantages of using independent satellite observations to investigate atmospheric phenomena, which may not always be well documented. The impact of this increased detection capacity in reducing false positives, in the framework of a short-term seismic hazard forecast based on the study of ionospheric and tropospheric anomalies, is also addressed. Full article
(This article belongs to the Special Issue Detecting Geospace Perturbations Caused by Earth)
Show Figures

Figure 1

Back to TopTop