Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 90 degree yaw

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5431 KB  
Article
Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
by Hye-Min Won, Jieun Lee and Jiyong Oh
Technologies 2025, 13(9), 386; https://doi.org/10.3390/technologies13090386 - 1 Sep 2025
Viewed by 1350
Abstract
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out [...] Read more.
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-degree-of-freedom pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error, calculated as the average Euclidean distance between the predicted and ground-truth (x, y) coordinates, is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error, representing the average angular deviation between the predicted and ground-truth yaw angles, is reduced by 55.6%, 65.7%, and 73.3%, when percentile thresholds of 90%, 80%, and 70% are applied, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal and end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments. Full article
(This article belongs to the Special Issue AI Robotics Technologies and Their Applications)
Show Figures

Figure 1

22 pages, 4195 KB  
Article
Research on Stability Control Algorithm of Distributed Drive Bus under High-Speed Conditions
by Shaopeng Zhu, Bangxuan Wei, Chen Ping, Minjun Shi, Chen Wang, Huipeng Chen and Minglu Han
World Electr. Veh. J. 2023, 14(12), 343; https://doi.org/10.3390/wevj14120343 - 12 Dec 2023
Cited by 4 | Viewed by 2899
Abstract
Aiming at the instability problem of a four-wheel independent drive electric bus under high-speed conditions, this paper first designs a vehicle yaw stability controller based on a linear two-degree-of-freedom model and a linear quadratic programming (LQR) algorithm. A vehicle roll stability controller is [...] Read more.
Aiming at the instability problem of a four-wheel independent drive electric bus under high-speed conditions, this paper first designs a vehicle yaw stability controller based on a linear two-degree-of-freedom model and a linear quadratic programming (LQR) algorithm. A vehicle roll stability controller is then designed based on a linear three-degree-of-freedom model and a model predictive control algorithm (MPC). Moreover, a coordinated control rule based on the lateral load transfer rate (LTR) is designed for the coupled problem of yaw and roll dynamics. Finally, the effectiveness of the proposed control algorithm is verified by simulation. The obtained results show that when the vehicle is running at a high speed of 90 km/h, the stability control algorithm can control the yaw rate tracking error within 0.05 rad/s. In addition, the control algorithm can reduce the maximum amplitude of the side slip angle, the maximum value of the roll angle, the maximum value of the roll angular velocity, and the amplitude of the lateral acceleration by more than 96%, 81.1%, 65.0%, and 11.1%, respectively. Full article
(This article belongs to the Special Issue Dynamics, Control and Simulation of Electrified Vehicles)
Show Figures

Figure 1

15 pages, 3917 KB  
Article
Design of a Novel Haptic Joystick for the Teleoperation of Continuum-Mechanism-Based Medical Robots
by Yiping Xie, Xilong Hou and Shuangyi Wang
Robotics 2023, 12(2), 52; https://doi.org/10.3390/robotics12020052 - 29 Mar 2023
Cited by 12 | Viewed by 5349
Abstract
Continuum robots are increasingly used in medical applications and the master–slave-based architectures are still the most important mode of operation in human–machine interaction. However, the existing master control devices are not fully suitable for either the mechanical mechanism or the control method. This [...] Read more.
Continuum robots are increasingly used in medical applications and the master–slave-based architectures are still the most important mode of operation in human–machine interaction. However, the existing master control devices are not fully suitable for either the mechanical mechanism or the control method. This study proposes a brand-new, four-degree-of-freedom haptic joystick whose main control stick could rotate around a fixed point. The rotational inertia is reduced by mounting all powertrain components on the base plane. Based on the design, kinematic and static models are proposed for position perception and force output analysis, while at the same time gravity compensation is also performed to calibrate the system. Using a continuum-mechanism-based trans-esophageal ultrasound robot as the test platform, a master–slave teleoperation scheme with position–velocity mapping and variable impedance control is proposed to integrate the speed regulation on the master side and the force perception on the slave side. The experimental results show that the main accuracy of the design is within 1.6°. The workspace of the control sticks is −60° to 110° in pitch angle, −40° to 40° in yaw angle, −180° to 180° in roll angle, and −90° to 90° in translation angle. The standard deviation of force output is within 8% of the full range, and the mean absolute error is 1.36°/s for speed control and 0.055 N for force feedback. Based on this evidence, it is believed that the proposed haptic joystick is a good addition to the existing work in the field with well-developed and effective features to enable the teleoperation of continuum robots for medical applications. Full article
(This article belongs to the Special Issue Immersive Teleoperation and AI)
Show Figures

Figure 1

15 pages, 1308 KB  
Article
Factors Affecting the Perception of 3D Facial Symmetry from 2D Projections
by Michael B. Lewis
Symmetry 2017, 9(10), 243; https://doi.org/10.3390/sym9100243 - 21 Oct 2017
Cited by 6 | Viewed by 9428
Abstract
Facial symmetry is believed to have an evolutionary significance and so its detection should be robust in natural settings. Previous studies of facial symmetry detection have used front views of faces where the decision could be made on 2D image properties rather than [...] Read more.
Facial symmetry is believed to have an evolutionary significance and so its detection should be robust in natural settings. Previous studies of facial symmetry detection have used front views of faces where the decision could be made on 2D image properties rather than 3D facial properties. These studies also employed comparative judgements, which could be influenced by attractiveness rather than symmetry. Two experiments explored the ability to detect typical levels of 3D facial asymmetry (contrasted with wholly symmetrical faces) from 2D projections of faces. Experiment 1 showed that asymmetry detection was impaired by inversion but even more impaired by 90 degrees rotation demonstrating the importance of the vertical reflection. Asymmetry detection was also reduced by yaw rotation of the head but still above-chance at 30 degrees rotation. Experiment 2 explored the effect of asymmetrical lighting and yaw rotation up to 45 degrees. Detection of asymmetry was affected by asymmetrical lighting and yaw rotation in a non-additive manner. The results are discussed in terms of the special role that faces and vertical symmetry play in visual perception. Full article
Show Figures

Figure 1

23 pages, 27114 KB  
Article
An Analysis of the Side Slither On-Orbit Calibration Technique Using the DIRSIG Model
by Aaron Gerace, John Schott, Michael Gartley and Matthew Montanaro
Remote Sens. 2014, 6(11), 10523-10545; https://doi.org/10.3390/rs61110523 - 31 Oct 2014
Cited by 23 | Viewed by 9099
Abstract
Pushbroom-style imaging systems exhibit several advantages over line scanners when used on space-borne platforms as they typically achieve higher signal-to-noise and reduce the need for moving parts. Pushbroom sensors contain thousands of detectors, each having a unique radiometric response, which will inevitably lead [...] Read more.
Pushbroom-style imaging systems exhibit several advantages over line scanners when used on space-borne platforms as they typically achieve higher signal-to-noise and reduce the need for moving parts. Pushbroom sensors contain thousands of detectors, each having a unique radiometric response, which will inevitably lead to streaking and banding in the raw data. To take full advantage of the potential exhibited by pushbroom sensors, a relative radiometric correction must be performed to eliminate pixel-to-pixel non-uniformities in the raw data. Side slither is an on-orbit calibration technique where a 90-degree yaw maneuver is performed over an invariant site to flatten the data. While this technique has been utilized with moderate success for the QuickBird satellite [1] and the RapidEye constellation [2], further analysis is required to enable its implementation for the Landsat 8 sensors, which have a 15-degree field-of-view and a 0.5% pixel-to-pixel uniformity requirement. This work uses the DIRSIG model to analyze the side slither maneuver as applicable to the Landsat sensor. A description of favorable sites, how to adjust the maneuver to compensate for the curvature of “linear” arrays, how to efficiently process the data, and an analysis to assess the quality of the side slither data, are presented. Full article
(This article belongs to the Special Issue Landsat-8 Sensor Characterization and Calibration)
Show Figures

Graphical abstract

Back to TopTop