Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 25I-NBOMe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1775 KiB  
Review
Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
by Petar Ristivojević, Božidar Otašević, Petar Todorović and Nataša Radosavljević-Stevanović
Processes 2025, 13(8), 2371; https://doi.org/10.3390/pr13082371 - 25 Jul 2025
Viewed by 424
Abstract
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has [...] Read more.
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has advanced considerably, improving detection of traditional drugs—such as tetrahydrocannabinol, cocaine, heroin, amphetamine-type stimulants, and lysergic acid diethylamide—as well as emerging new psychoactive substances (NPS), including synthetic cannabinoids (e.g., 5F-MDMB-PICA), cathinones (e.g., α-PVP), potent opioids (e.g., carfentanil), designer psychedelics (e.g., 25I-NBOMe), benzodiazepines (e.g., flualprazolam), and dissociatives (e.g., 3-HO-PCP). Current technologies include colorimetric assays, ambient ionization mass spectrometry, and chromatographic methods coupled with various detectors, all enhancing accuracy and precision. Vibrational spectroscopy techniques, like Raman and Fourier transform infrared spectroscopy, have become essential for non-destructive identification. Additionally, new sensors with disposable electrodes and miniaturized transducers allow ultrasensitive on-site detection of drugs and metabolites. Advanced chemometric algorithms extract maximum information from complex data, enabling faster and more reliable identifications. An important emerging trend is the adoption of green analytical methods—including direct analysis, solvent-free extraction, miniaturized instruments, and eco-friendly chromatographic processes—that reduce environmental impact without sacrificing performance. This review provides a comprehensive overview of innovations over the last five years in forensic drug analysis based on the ScienceDirect database and highlights technological trends shaping the future of forensic toxicology. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

13 pages, 1599 KiB  
Article
Sublethal Concentrations of 2C-I and 25I-NBOMe Designer Drugs Impact Caenorhabditis elegans Development and Reproductive Behavior
by Eva Gil-Martins, Daniel José Barbosa, Fernando Cagide, Fernando Remião, Fernanda Borges and Renata Silva
Int. J. Mol. Sci. 2025, 26(7), 3039; https://doi.org/10.3390/ijms26073039 - 26 Mar 2025
Viewed by 733
Abstract
Designer drugs like 2C-I and 25I-NBOMe have emerged as potent psychoactive substances, with several reports linking their consumption to severe poisoning and fatalities. However, there is limited information on their toxicity, particularly in in vivo models. In this manuscript, we evaluate the survival, [...] Read more.
Designer drugs like 2C-I and 25I-NBOMe have emerged as potent psychoactive substances, with several reports linking their consumption to severe poisoning and fatalities. However, there is limited information on their toxicity, particularly in in vivo models. In this manuscript, we evaluate the survival, developmental, and reproductive impact of these designer drugs on the model organism Caenorhabditis elegans (C. elegans). For this purpose, adult worms synchronized at the L1 stage were exposed to growing concentrations of 2C-I and 25I-NBOMe. The animal survival rate and the putative effects of the drugs on C. elegans development and reproductive behavior were assessed after 24 h of exposure. A concentration-dependent decrease in animal survival was observed. 25I-NBOMe was approximately six times more toxic than 2C-I (LC50 values—1.368 mM for 2C-I and 0.236 mM for 25I-NBOMe). Furthermore, sublethal concentrations of both drugs delayed animal development and reduced the total progeny but not its survival. Overall, these findings underscore the developmental and reproductive risks associated with exposure to 2C-I and 25I-NBOMe, even at sublethal concentrations. Full article
Show Figures

Figure 1

18 pages, 2075 KiB  
Article
Acute Effects of the Psychedelic Phenethylamine 25I-NBOMe in C57BL/6J Male Mice
by Sabrine Bilel, Cristina Miliano, Giorgia Corli, Marta Bassi, Massimo Trusel, Raffaella Tonini, Maria Antonietta De Luca and Matteo Marti
Int. J. Mol. Sci. 2025, 26(6), 2815; https://doi.org/10.3390/ijms26062815 - 20 Mar 2025
Viewed by 1608
Abstract
25I-NBOMe (4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamine) is a synthetic psychedelic compound abused for its ambiguous legal state as a counterfeit lysergic acid diethylamide (LSD). 25I-NBOMe acts as a selective agonist of 5HT2A receptors leading to hallucinations, intoxications, and fatalities. Here, we assessed the rewarding properties [...] Read more.
25I-NBOMe (4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamine) is a synthetic psychedelic compound abused for its ambiguous legal state as a counterfeit lysergic acid diethylamide (LSD). 25I-NBOMe acts as a selective agonist of 5HT2A receptors leading to hallucinations, intoxications, and fatalities. Here, we assessed the rewarding properties of 25I-NBOMe and its behavioral and neurotoxic acute effects on the central nervous system of C57BL/6J mice. We evaluated the dopamine (DA) levels using in vivo microdialysis in the nucleus accumbens (NAc) shell after 25I-NBOMe (0.1–1 mg/kg i.p.) injection. We also investigated the effects of 25I-NBOMe (0.1–1 mg/kg i.p.) on locomotor activity, reaction time, and prepulse inhibition. Moreover, we assessed the acute 25I-NBOMe (1 µM) effects on synaptic transmission and plasticity in the medial prefrontal cortex (mPFC) by using ex vivo electrophysiology. Our findings suggest that 25I-NBOMe affects the DA transmission in NAc shell at the highest dose tested, increases the reaction time within 30 min after the administration, and disrupts the PPI. In slices, it prevents long-term synaptic potentiation (LTP) in the mPFC, an effect that could not be reverted by the co-administration of the selective 5HT2A antagonist (MDL100907). Overall, these findings provide valuable new insights into the effects of 25I-NBOMe and the associated risks of its use. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

15 pages, 8756 KiB  
Article
Does Conformation Affect the Analytical Response? A Structural and Infrared Spectral Evaluation of Phenethylamines (2C-H, 25H-NBOH, and 25I-NBOMe) Using In Silico Methodology
by Lívia Salviano Mariotto, Caio Henrique Pinke Rodrigues and Aline Thais Bruni
Psychoactives 2024, 3(1), 78-92; https://doi.org/10.3390/psychoactives3010006 - 25 Feb 2024
Cited by 1 | Viewed by 1493
Abstract
The identification of new psychoactive substances (compounds that mimic the effects of outlawed substances) poses a significant challenge due to their rapid emergence and continuous modifications. This phenomenon results in these molecules escaping legal regulation, allowing them to circumvent legislation. The phenethylamine class [...] Read more.
The identification of new psychoactive substances (compounds that mimic the effects of outlawed substances) poses a significant challenge due to their rapid emergence and continuous modifications. This phenomenon results in these molecules escaping legal regulation, allowing them to circumvent legislation. The phenethylamine class has garnered attention because its molecules replicate the effects of LSD and are associated with numerous cases of intoxication. In this study, we focused on three phenethylamines—2C-H, 25H-NBOH, and 25I-NBOMe—with crystallographic structures available in the Cambridge Crystallographic Data Center (CCDC) database. We conducted a systematic conformational analysis and compared the structural information obtained. Subsequently, we compared the spectra derived from this analysis with experimental details from the ENFSI database. Structural comparisons were made based on the RMSDs between the lower energy conformations and experimental crystallographic structures. Additionally, structures obtained from direct optimization were compared. We then simulated the spectra based on the X-ray structures and compared them with those in the experimental database. Interpretation was carried out using heat maps and PCA in Pirouette software. Combining in silico methods with experimental approaches provides a more comprehensive understanding of the characterization process of new psychoactive substances (NPSs). Full article
(This article belongs to the Special Issue Feature Papers in Psychoactives)
Show Figures

Figure 1

7 pages, 4246 KiB  
Brief Report
Acute Limb Ischemia after Intake of the Phenylethylamine Derivate NBOMe
by Patricia P. Wadowski, Georgiana-Aura Giurgea, Oliver Schlager, Anton Luf, Thomas Gremmel, Eva-Luise Hobl, Sylvia Unterhumer, Henriette Löffler-Stastka and Renate Koppensteiner
Int. J. Environ. Res. Public Health 2019, 16(24), 5071; https://doi.org/10.3390/ijerph16245071 - 12 Dec 2019
Cited by 4 | Viewed by 3338
Abstract
Objective: N-(2-methoxy) benzyl-phenethylamine (NBOMe) derivatives have a high affinity to the serotonin receptor 2A and emerged as new psychedelic agents. We report the case of a 30-year-old man admitted to the hospital because of acute ischemia of the left arm with clinical [...] Read more.
Objective: N-(2-methoxy) benzyl-phenethylamine (NBOMe) derivatives have a high affinity to the serotonin receptor 2A and emerged as new psychedelic agents. We report the case of a 30-year-old man admitted to the hospital because of acute ischemia of the left arm with clinical symptoms of pallor, pulselessness, paresthesia, and a motoric deficit. The patient had a history of schizophrenia and drug abuse and disclosed during the hospital stay the sublingual intake of a substance bought as 25I-NBOMe the night before the ischemic event. Methods: Routine clinical diagnostics including among others color-coded duplex sonography and computed tomography angiography (CTA) were performed. The remainder of the drugs was analyzed using high performance liquid chromatography. Results: Initial color-coded duplex sonography of the upper left limb showed pathological flow profiles of the axillary, brachial, ulnar, and radial artery with a reduced diameter of the ulnar (0.9 mm) and radial (1.1 mm) artery. In consequence, peripheral vasospasm, distal arterial thrombosis, or arterial embolization was anticipated. As therapeutic measures, the patient immediately received intravenous systemic vasodilators (alprostadil) and therapeutic anticoagulation with low molecular weight heparin. Instant symptom improvement was observed within the first day after therapy initiation. The subsequently performed CTA of the heart and left arm showed no signs of thrombotic material. Treatment was continued for five days and the patient was released thereafter having completely normalized perfusion in his left arm. Outpatient treatment was continued with calcium-channel blockers, as the patient had also displayed arterial hypertension. Drug analysis retrieved a composition of the isomers 25I-NBOMe, 25C-NBOMe, and 25H-NBOMe as well as traces of pentylon. Conclusion: NBOMe ingestion implicates the risk of peripheral vasospasms with severe, limb-threatening ischemia. Full article
(This article belongs to the Special Issue Ingredients for a Sustainable Wholesome Network in Mental Health)
Show Figures

Figure 1

Back to TopTop