Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 2020 Yutian earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13205 KB  
Article
Static Stress Transfer and Fault Interaction Within the 2008–2020 Yutian Earthquake Sequence Constrained by InSAR-Derived Slip Models
by Xiaoran Fan, Guohong Zhang and Xinjian Shan
Remote Sens. 2026, 18(2), 288; https://doi.org/10.3390/rs18020288 - 15 Jan 2026
Viewed by 266
Abstract
The Yutian region at the southwestern termination of the Altyn Tagh Fault has experienced four moderate-to-strong earthquakes since 2008, providing an opportunity to investigate fault interactions within a transtensional tectonic setting. In this study, we derive the coseismic deformation and slip model of [...] Read more.
The Yutian region at the southwestern termination of the Altyn Tagh Fault has experienced four moderate-to-strong earthquakes since 2008, providing an opportunity to investigate fault interactions within a transtensional tectonic setting. In this study, we derive the coseismic deformation and slip model of the 2020 Mw 6.3 Yutian earthquake using ascending and descending Sentinel-1 InSAR data. The deformation field exhibits a characteristic subsidence–uplift pattern consistent with normal faulting, and the preferred slip model indicates a north–south-striking fault with slip concentrated at depths of 6–9 km. To place this event in a broader tectonic context, we incorporate published slip models for the 2008 and 2014 earthquakes together with a simplified finite-fault model for the 2012 event to construct a unified four-event source framework. Static Coulomb stress calculations reveal complex interactions among the four earthquakes. Localized positive loading from the 2012 event partially counteracts the negative ΔCFS imposed by the 2008 and 2014 earthquakes, reshaping the stress field rather than simply promoting or inhibiting failure. The cumulative stress evolution shows persistent unclamping and repeated shear-stress reversals, indicating that the 2020 earthquake resulted from long-term extensional loading superimposed on multi-stage coseismic stress redistribution. These results demonstrate that multi-event stress analysis provides a more reliable framework for assessing seismic hazards in regions with complex local stress fields. Full article
(This article belongs to the Special Issue Advanced Satellite Remote Sensing for Geohazards)
Show Figures

Figure 1

13 pages, 30433 KB  
Communication
Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data
by Zhanhong Huang, Lei Xie, Lei Zhao and Wenbin Xu
Remote Sens. 2023, 15(9), 2258; https://doi.org/10.3390/rs15092258 - 25 Apr 2023
Viewed by 2126
Abstract
Spatiotemporal distribution of early afterslip is essential for seismic hazard evaluation and determination of fault friction properties. In this study, we used early post-seismic COSMO-SkyMed (19 February 2014–08 April 2014) and long-term Sentinel-1 (16 October 2014–17 June 2020) observations from multiple platforms over [...] Read more.
Spatiotemporal distribution of early afterslip is essential for seismic hazard evaluation and determination of fault friction properties. In this study, we used early post-seismic COSMO-SkyMed (19 February 2014–08 April 2014) and long-term Sentinel-1 (16 October 2014–17 June 2020) observations from multiple platforms over different periods to create a rate decay model driven by post-seismic afterslip. The combined observations provide full coverage of the post-seismic deformation following the 2014 Yutian Mw 6.9 earthquake that occurred at the southwestern end of the Altyn Tagh Fault. The observation and modeling results showed that post-seismic deformation was characterized by left-lateral strike-slip movement with minor normal slip, which was consistent with that of co-seismic rupture. The maximum early afterslip (7–55 days) was as large as approximately 0.09 m with a depth of 7 km in the west of co-seismic rupture, and the maximum long-term afterslip was about 0.24 m. The simulated post-seismic deformation caused by poroelastic rebound and viscoelastic relaxation suggests that the afterslip mechanism controls the post-seismic deformation. The coupling pattern of the aftershock and afterslip indicates that the aftershock was mainly caused by the afterslip. The post-seismic spatiotemporal features of the 2014 Yutian earthquake have significant implications for analyzing seismic hazards at the southwestern end of the Altyn Tagh Fault. Full article
(This article belongs to the Special Issue Monitoring Subtle Ground Deformation of Geohazards from Space)
Show Figures

Figure 1

18 pages, 19715 KB  
Article
Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet
by Ping He, Yangmao Wen, Kaihua Ding and Caijun Xu
Remote Sens. 2020, 12(18), 3012; https://doi.org/10.3390/rs12183012 - 16 Sep 2020
Cited by 22 | Viewed by 4336
Abstract
Extensional earthquakes in the Tibetan Plateau play an important role in the plateau’s orogenic evolution and cause heavy seismic hazard, yet their mechanisms remain poorly known, in particular in harsh northern Tibet. On 25 June 2020, a Mw 6.2 earthquake struck Yutian, Xinjiang, [...] Read more.
Extensional earthquakes in the Tibetan Plateau play an important role in the plateau’s orogenic evolution and cause heavy seismic hazard, yet their mechanisms remain poorly known, in particular in harsh northern Tibet. On 25 June 2020, a Mw 6.2 earthquake struck Yutian, Xinjiang, offering us a rare chance to gain insights into its mechanism and implications in the Tibetan extension. We used both descending and ascending Sentinel-1 images to generate coseismic deformation associated with this event, which indicates a typical extensional mechanism with a maximum subsidence displacement of 25 cm and minor uplift. The causative fault constrained with interferometric synthetic aperture radar (InSAR) data based on a finite fault model suggests that the fault plane has a strike of 186.4° and westward dip of 64.8°, and the main rupture is concentrated at a depth of 3.6–10.8 km with a peak slip of 0.85 m. Our source model indicates that the 2020 Yutian event ruptured an unknown high-angle blind normal fault with N–S striking. The total released geodetic moment yields 2.69 × 1018 N·m, equivalent to Mw 6.23. We used dense interseismic global positioning system (GPS) measurements to reveal an approximate 7 mm/yr extensional motion in the Yutian region, but it still does not seem large enough to support high local seismicity for normal events within 12 years, i.e., Mw 7.1 in 2008, Mw 6.2 in 2012, and this event in 2020. Combined with Coulomb stress change modeling, we speculate that the seismicity in Yutian is related to the lower lithospheric dynamics. Full article
Show Figures

Figure 1

Back to TopTop