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Abstract: Extensional earthquakes in the Tibetan Plateau play an important role in the plateau’s
orogenic evolution and cause heavy seismic hazard, yet their mechanisms remain poorly known, in
particular in harsh northern Tibet. On 25 June 2020, a Mw 6.2 earthquake struck Yutian, Xinjiang,
offering us a rare chance to gain insights into its mechanism and implications in the Tibetan
extension. We used both descending and ascending Sentinel-1 images to generate coseismic
deformation associated with this event, which indicates a typical extensional mechanism with a
maximum subsidence displacement of 25 cm and minor uplift. The causative fault constrained with
interferometric synthetic aperture radar (InSAR) data based on a finite fault model suggests that the
fault plane has a strike of 186.4◦ and westward dip of 64.8◦, and the main rupture is concentrated at a
depth of 3.6–10.8 km with a peak slip of 0.85 m. Our source model indicates that the 2020 Yutian
event ruptured an unknown high-angle blind normal fault with N–S striking. The total released
geodetic moment yields 2.69 × 1018 N·m, equivalent to Mw 6.23. We used dense interseismic global
positioning system (GPS) measurements to reveal an approximate 7 mm/yr extensional motion in
the Yutian region, but it still does not seem large enough to support high local seismicity for normal
events within 12 years, i.e., Mw 7.1 in 2008, Mw 6.2 in 2012, and this event in 2020. Combined with
Coulomb stress change modeling, we speculate that the seismicity in Yutian is related to the lower
lithospheric dynamics.

Keywords: 2020 Yutian earthquake; InSAR coseismic displacement; interseismic GPS; northern
Tibet extension

1. Introduction

The Tibetan Plateau, with an average altitude of 5000 m over a lateral area of thousands of
kilometers, exhibits complex large-scale intercontinental deformation and serves as a prototype for
intracontinental orogenic process on the Earth (e.g., [1–3], Figure 1). The N–S shortening and lithospheric
thickening in Tibet is well established by the India–Asia collision, but the mechanism of extensional
faulting along N–S striking grabens remains speculative and has been widely disputed [4–11]. Indeed,
the cause of extension in Tibet is directly related to the fundamental issue for the plateau rise and deeply
affects climate and environment changes [6]. To address the question of what the mechanism of normal
faulting is in the Tibetan Plateau, numerous hypotheses have been proposed, e.g., gravitational collapse
of high topography [7], thermal evolution of the thickened lithosphere [8], convective removal of
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the mantle lithosphere [9], and reduction in the rate of Indian convergence [10]. These hypotheses
partially make sense in terms of large-scale geophysical and geological data, but they do not reach an
agreement on small-scale tectonic activities, resulting in some debates or contradictions. Therefore,
detailed normal faulting from geodetic data has become more important to constrain and validate
these hypotheses and their relative models [11].
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at a rate of 23 ± 3 mm/yr, which is accommodated half by strike-slip and half by normal faulting 
[2,7,14]. Different from the strike-slip concentrated on several major faults (>10 mm/yr; e.g., Altyn 
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magnitude are associated with numerous narrow-width rift flank uplifts and basins [3] and are 
poorly constrained due to sparse global positioning system (GPS) sites and time series interferometric 
synthetic aperture radar (InSAR) data. Therefore, the active deformation and relative mechanism of 
normal faulting remain barely known. Present characteristics of normal–faulting activities are mainly 
delineated by focal mechanisms from earthquake catalogues, suggesting high seismicity with normal 
faulting in southern Tibet but a low level in northern Tibet divided by the boundary of the Jiali fault 
(i.e., Bangong–Nujiang suture) [15,16]. In contrast to the south, the Tibet extension has commonly 
been accepted as being responsible for the coupling of the Indian lower crust [17]; the mechanism of 

Figure 1. Topographic and tectonic setting map surrounding the 2020 Mw 6.2 Yutian earthquake.
Beach balls represent focal mechanism solutions of events with magnitude larger than Mw 6 during
1976–2020 from the Global Centroid-Moment-Tensor (GCMT), light blue represents historical events
and red the 2020 event. Yellow points are aftershocks (M ≥ 4) within one week after the main shock
from the US Geological Survey (USGS). Blue and black lines indicate regional active faults from [12,13],
respectively. Blue rectangles depict footprints of Sentinel-1 A/B images used in this study. The insert
map shows the location of the epicenter and the study region in Tibet Plateau. The yellow star is the
epicenter, and the dashed blue rectangle is our study region.

Geodetic observations throughout the plateau interior verify a significant ESE-WNW extension at
a rate of 23 ± 3 mm/yr, which is accommodated half by strike-slip and half by normal faulting [2,7,14].
Different from the strike-slip concentrated on several major faults (>10 mm/yr; e.g., Altyn Tagh,
Karakorum, Kunlun, and Xianshuihe faults), these normal faults with low deformation magnitude are
associated with numerous narrow-width rift flank uplifts and basins [3] and are poorly constrained due
to sparse global positioning system (GPS) sites and time series interferometric synthetic aperture radar
(InSAR) data. Therefore, the active deformation and relative mechanism of normal faulting remain
barely known. Present characteristics of normal–faulting activities are mainly delineated by focal
mechanisms from earthquake catalogues, suggesting high seismicity with normal faulting in southern
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Tibet but a low level in northern Tibet divided by the boundary of the Jiali fault (i.e., Bangong–Nujiang
suture) [15,16]. In contrast to the south, the Tibet extension has commonly been accepted as being
responsible for the coupling of the Indian lower crust [17]; the mechanism of the northern Tibet
extension far from the Indian plate is more enigmatic and impedes our understanding of the overall
Tibet extension [16].

On 25 June 2020 at 21:05 UTC (13:05 local time), a Mw 6.3 earthquake (Ms 6.4 according to the
China Earthquake Networks Center (CENC]) struck Yutian County, Xinjiang Province, China recorded
by the US Geological Survey (USGS) earthquake catalogue. This event occurred in a junction area of
the Altyn Tagh, Karakax, and Kunlun fault systems in northwestern Tibet, 164 km south of Yutian
County. Within one week, five M 4.0+ aftershocks occurred along a lineament striking approximately
N-S. As it is a sparsely populated region, no casualties were reported in this event. The USGS,
Global Centroid-Moment-Tensor (GCMT) [18], and CENC agree that the primary focal mechanism
for this event was normal faulting. Note that this junction region has suffered high-level seismicity
in recent times, consisting of one strike-slip event (Mw 6.9 in 2014) and three normal-faulting events
(Mw 7.1 in 2008, Mw 6.2 in 2012, and Mw 6.2 in 2020) reported from the GCMT archive (Figure 1).
As an important window to obtain insights into extension activity in northern Tibet, it has drawn the
attention of scholars both at home and abroad [11,12,19–22]. However, the harsh terrain, high altitude,
and extreme weather conditions make this remote region barely accessible, and as a result only a
few field investigations were conducted for the 2008 Yutian event [12]. In addition, InSAR images
experience severe decorrelation for the 2008 event [11,20], and are not available for the 2012 event due
to SAR satellite updating. That is, the knowledge of these causative faults remains limited in this region.
Consequently, the 2020 event gains much more significant value in terms of exploring the evolution of
this normal event to incorporate the ongoing northern Tibet extension. Earthquakes with good source
modeling would yield much insight into their tectonic structure and dynamic mechanism [23]. In this
study, we analyze both descending and ascending C-band Sentinel-1 satellite data to determine the
coseismic displacements of the 2020 Yutian event. Based on the InSAR observations, we implement
source modelling to determine fault geometry and slip rupture on the causative fault. In addition,
we collect previous interseismic GPS measurements to simply analyze the local extensional setting.
Finally, we carry out Coulomb stress change modeling to explore the seismic behavior in northern Tibet.

2. Tectonic Setting

It is well recognized that the present deformation of the Tibetan Plateau is accompanied by
not only mega thrust-slip and strike-slip faults, but also ample interior normal faults. As shown in
Figure 2, a large number of normal faults associated with north-trending rifts have been deduced
from structural relief in the plateau. Note that normal faults in the northern part of the Jiali fault zone
exhibit small extensional features and isolated grabens, in contrast to the southern part, resulting in
much less knowledge in northern Tibet [24]. The GCMT earthquake catalogue has documented
many normal slip events that occurred in Tibet in the past few decades. These numerous normal slip
events are of moderate magnitude, resulting in the sparse GPS measurement in Tibet. With European
Remote Sensing (ERS-1/2), Envisat, and ALOS SAR images, coseismic and postseismic deformation
were derived to constrain the coseismic rupture and lithospheric rheological structure, e.g., the four
normal-faulting earthquakes (Mw 5.7–6.2) that occurred in the Pumqu–Xainza rift (PXR) in 1993 and
1996 [25], the 2004 Mw 6.2, 2005 Mw 6.3, and 2008 Mw 6.7 Zhongba events [26], the 2008 Mw 5.9 and
6.4 Gaize events [11,27,28], and the 2008 Mw 6.3 Damxung event [29]. Yao et al. [30] noted that the Mw
6.2 event in Zhongba in 2004 could have been triggered by the remote Mw 9.1 and Mw 8.6 earthquakes
in Sumatra in 2004 and Nias in 2005, respectively. Most of these events that occurred in southern
Tibet and some near central Tibet have attracted a lot of attention. In contrast, the Yutian region in the
northwestern corner of Tibet, where the recent Mw 7.1 earthquake in 2008, the Mw 6.2 earthquake
in 2012, and this Mw 6.2 earthquake in 2020 occurred, has been considered as a high-seismicity
exception for normal faulting. Furthermore, the 2008 event was mapped by incomplete coverage of
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InSAR images [11,20], and the 2012 event escaped from available SAR image, resulting from the harsh
terrain [31]. To some extent, the 2020 Yutian event is the first major normal-slip event well imaged by
InSAR in this region. Therefore, it adds significant value for the investigation of the Tibet extension.

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 18 

 

Tectonically, northwestern Tibet, where the 2020 Yutian earthquake occurred, is characterized 
by conjugate mega-strike-slip faults with minor normal faults [12]. The regional tectonics consist of 
the mega-strike-slip Altyn Tagh fault to the north and en echelon Longmu–Guozha co-faults 
spreading from the Altyn Tagh fault to the south, which originated from an interaction of several 
active blocks, such as the western Kunlun, Qaidam–Qilian, Bayan Har, and Qiangtang blocks (Figure 
1) [12]. In the differential movement between the Altyn–Tagh and Longmu–Gozha co-fault systems, 
E–W–dipping extensional stress is generated. Since 2008, four events (Mw > 6) have been recorded 
by the GCMT catalogue, involving three normal-slip events on different faults and one strike-slip on 
the Altyn–Tagh fault [32]. From the 10 m resolution Sentinel-2 optical image (Figure 2, insert map), 
we find an appropriate location of this Yutian event lying between the Chung Muztagh mountains 
in the west and Heishibei Lake in the east. The peak of the highest Chung Muztagh mountain and an 
unknown lakefront mountain are covered by some ice sheets. Between the two mountains, a 
relatively flat landscape is characterized by some alluvial fans and small gullies, and the major gully 
strikes in the N–S direction, which corresponds to a common north-trending rift. Note that a known 
normal fault in the eastern flank of the Chung Muztagh mountains with east dipping has been 
inferred from field geological surveys after the Mw 7.1 Yutian event in 2008 [12], but whether it is the 
causative fault for this 2020 event is still unclear. 

 
Figure 2. Seismicity in Tibet and local geomorphic features (after [11]). Beach balls represent focal 
mechanism solutions of events with magnitude larger than Mw 6 during 1976–2020 from GCMT, in 
which normal, strike, and thrust events are rendered in green, blue, and black, respectively. The 
normal Yutian event in 2020 is plotted with red. The insert map shows near field geomorphic features 
for this event from the Sentinel-2 optical image. Red symbols with black triangles show locations of 
gullies. 

3. Coseismic Displacement Analyzed by InSAR Data 

Our study benefits from complete coverage of SAR imagery over the epicenter region. Two pairs 
of terrain observation with progressive scans (TOPS) images from the C-band Sentinel-1 radar 
satellite, operated by the European Space Agency (ESA), were employed to derive the coseismic 
displacement associated with the Yutian event. The novel constellation design and imaging modes 

Figure 2. Seismicity in Tibet and local geomorphic features (after [11]). Beach balls represent focal
mechanism solutions of events with magnitude larger than Mw 6 during 1976–2020 from GCMT,
in which normal, strike, and thrust events are rendered in green, blue, and black, respectively.
The normal Yutian event in 2020 is plotted with red. The insert map shows near field geomorphic
features for this event from the Sentinel-2 optical image. Red symbols with black triangles show
locations of gullies.

Tectonically, northwestern Tibet, where the 2020 Yutian earthquake occurred, is characterized by
conjugate mega-strike-slip faults with minor normal faults [12]. The regional tectonics consist of the
mega-strike-slip Altyn Tagh fault to the north and en echelon Longmu–Guozha co-faults spreading
from the Altyn Tagh fault to the south, which originated from an interaction of several active blocks,
such as the western Kunlun, Qaidam–Qilian, Bayan Har, and Qiangtang blocks (Figure 1) [12]. In the
differential movement between the Altyn–Tagh and Longmu–Gozha co-fault systems, E–W–dipping
extensional stress is generated. Since 2008, four events (Mw > 6) have been recorded by the GCMT
catalogue, involving three normal-slip events on different faults and one strike-slip on the Altyn–Tagh
fault [32]. From the 10 m resolution Sentinel-2 optical image (Figure 2, insert map), we find an
appropriate location of this Yutian event lying between the Chung Muztagh mountains in the west
and Heishibei Lake in the east. The peak of the highest Chung Muztagh mountain and an unknown
lakefront mountain are covered by some ice sheets. Between the two mountains, a relatively flat
landscape is characterized by some alluvial fans and small gullies, and the major gully strikes in the
N–S direction, which corresponds to a common north-trending rift. Note that a known normal fault in
the eastern flank of the Chung Muztagh mountains with east dipping has been inferred from field
geological surveys after the Mw 7.1 Yutian event in 2008 [12], but whether it is the causative fault for
this 2020 event is still unclear.

3. Coseismic Displacement Analyzed by InSAR Data

Our study benefits from complete coverage of SAR imagery over the epicenter region. Two pairs
of terrain observation with progressive scans (TOPS) images from the C-band Sentinel-1 radar satellite,
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operated by the European Space Agency (ESA), were employed to derive the coseismic displacement
associated with the Yutian event. The novel constellation design and imaging modes make the Sentinel-1
satellite advanced in terms of a shortened revisiting period and large-scale space coverage but with
similar pixel resolution to previous generations (i.e., ERS-1/2 and Envisat satellites), which greatly
strengthen its interferometric capacity to capture surface deformation signals. The analyzed SAR
dataset involves one descending pair (T165D) on 17 June 2020 and 29 June 2020, and one ascending
pair (T158A) on 22 June 2020 and 4 July 2020 (detailed InSAR information listed in Table 1). The two
image pairs have full coverage for the epicenter region (Figure 1). All of these InSAR data were
processed by the commercial GAMMA software platform following a mature two-pass differential
InSAR approach [33]. We adopted a multi-look factor of 20:4 in the range and azimuth direction for
the Sentinel-1 images and removed the phase contribution of topography with 1 arc-sec resolution
digital elevation data [34]. Then the interferograms were filtered, unwrapped, and geocoded within
a common processing flow. The processed interferograms are shown in Figure 3a,b, which show
the main deformed region featuring a pattern of two lobes along the N–S direction, and a flat valley
surface between the Chung Muztagh mountains to the west and Heishibei Lake to the east. In addition,
some decorrelations in the interferograms are caused by ice sheet and lake water cover.

Table 1. Interferometry pairs used in this study.

Track
Master Slave Perp. B Inc. Angle Azi. Angle

Original Corrected

σ α σ α

(YYYYMMDD) (YYYYMMDD) (m) (◦) (◦) (mm) (km) (mm) (km)

T165
(D) 20200617 20200629 −86.3 29–44 190.3 0.75 30.0 0.45 12.4

T158
(A) 20200622 20200704 84.6 35–48 −9.8 3.52 57.4 0.8 24.7

Note: A and D indicate ascending and descending orbit, respectively. σ is the standard deviation of line-of-sight
(LOS) measurements in non-deforming regions of interferograms and α is the e-folding correlation length scale of
1D covariance functions of interferograms. All data errors for original and corrected interferograms are listed.
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To refine the quality of interferograms, we considered the atmospheric error corrected by the
Generic Atmospheric Correction Online Service (GACOS) for InSAR [35]. As the major error source of
InSAR, the atmospheric effect can reach up to several centimeters on an interferogram [36], and it should
be taken into account in applications of small-scale deformation activities, e.g., mining subsidence,
landslide, volcanic deformation, tectonic movement, and even coseismic deformation caused by a
small or moderate event [35,37]. The atmospheric correction model related to topography has been
successfully applied in many cases (e.g., [38,39]), but this empirical model hardly distinguishes error
from actual deformation and leads to overestimation [40]. The GACOS data make up a high-resolution
tropospheric delay model developed by the European Centre for Medium-Range Weather Forecast,
and advanced medium-long-scale (>10 km) atmospheric error correction for InSAR [41]. This study
shows relative atmospheric error ranging 2–4 cm for the whole interferogram and 1–2 cm for near
field inferred from the GACOS model, and an average 1 cm phase standard deviation reduced after
correction (atmospheric phase contribution shown in Figure 3c,d). We estimated the precision of the
corrected interferograms with a simple 1D covariance function, which suggests a standard deviation of
0.45 cm and 0.8 cm for T165D and T158A, respectively (Table 1).

The final interferograms shown in Figure 4 exhibit clear deformation signals in a complex tectonic
region, and their displacement ranges from −22 to 10 cm (Figure 4a,b). The interferograms indicate
a maximum negative line-of-sight (LOS) displacement value of 19.2 cm and 21.9 cm for T165D and
T158A, respectively (negative LOS value represents increasing distance from the satellite), with a
dominant vertical component. In comparison to the negative displacement, the positive displacement
is very small. Figure 4c,d shows the LOS coseismic displacement profiles corresponding to the dashed
line (AA’) drawn in Figure 4a,b. The profiles from descending and ascending images show similar
feature, major subsidence displacement accompanied by minor uplift. In addition, the profiles in
Figure 4 show no surface rupture caused by this event, and as a result it is difficult to directly relate
any of the previously known faults to the causative fault.
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With the two interferograms in different look vectors, we can implement two-dimensional
decomposition to resolve the east–west and upward–downward components by neglecting the
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north-south component, also called a 2.5-D surface deformation map. The LOS displacement is less
sensitive to the north–south displacement, which can be neglected in the simple 2.5-D decomposition
method. In addition, the 2020 Yutian event occurred on a normal fault with approximate N–S strike,
which consists mostly of a vertical component. Therefore, the 2.5-D decomposition method is suitable
for this case. As shown in Figure 5a, there exists maximum eastward displacement with a value of
10.7 cm and westward displacement with a value of 7 cm. In the vertical component from Figure 5b,
a clear subsidence displacement with a maximum of 25 cm is observed on the left side, and some minor
uplift on the right side. This 2.5-D surface deformation field suggests that the 2020 Yutian event is
predominantly normal slip.
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Figure 4.

4. Source Modeling

Given that coseismic displacement is considered to be responsible for the subsurface rupture
slip within a homogeneous elastic half-space [42], most recent earthquake mechanisms have been
described with a finite rectangular dislocation model by geodetic observation. The analytical solution
of a rectangular dislocation model involves fault geometry (longitude and latitude of fault location,
length, width, depth, strike, dip) and relative kinematic parameters (slip magnitude and rake direction).
As a complex geophysical inversion problem, a mature two-step inversion strategy including nonlinear
uniform and linear distributed slip models was adopted to solve these parameters in previous works
(e.g., [31]), and it is also followed in this study.

Before implementing the source model, we utilized a resolution-based downsampling method for
the interferograms to generate the input dataset for inversion. Each Sentinel-1 interferogram yielded
107–108 measurements in line of sight from the satellite, providing dense coseismic displacement
observations. Indeed, it would cause heavy burden on computational efficiency and disturbance
on unknown parameters if all of these points were used for inversion calculation. Therefore,
it was necessary to resample the interferograms with the proper number points and retain the
main deformation feature. Gradient-based quadtree sampling is the most widely used method for
InSAR downsampling [43], but it is difficult to retain a suitable distribution and number of points
when there is limited deformation magnitude caused by a small or moderate event. Conversely,
a resolution-based resampling method developed by [44] can well distinguish the information in
near and far fields for interferograms, and additional information of rough fault location is needed.
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Considering the magnitude of the 2020 Yutian earthquake, we carried out the latter method to resample
the interferograms, and retrieved 680 and 713 points for T165D and T158A, respectively (retained
points are shown in Figure 6).
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Figure 6. Subsampling points of InSAR data for Sentinel-1 track (a) T165D and (b) T158A with the
resolution-based sampling method [44].

In the uniform slip model inversion, we inverted the fault geometry by assuming the subsurface
rupture with a uniform slip. Differently from previous direct-search methods that only consider
the observed data error, a Bayesian inverse approach developed by [45] determines optimal model
parameters with the posterior probability density functions (PDFs) of source parameters as well as the
prior knowledge of observations. With this Bayesian inversion method, the ranges of the initial model
are not restrictive (e.g., the strike and dip angles can vary from 0◦ to 360◦ and −90◦ to 90◦, respectively),
implying that all possible fault geometry and kinematics parameters can be explored (detailed initial
and optimal model solutions can be found in Table 2).

Table 2. Prior and inversion results for the 2020 Yutian earthquake.

Rectangular Dislocation with Uniform Slip [42]

Length Width Depth a Dip Strike X
Center

Y
Center

Strike
Slip b

Dip
Slip c

(m) (m) (m) (◦) (◦) (m) (m) (m) (m)

Lower 1000 4000 2000 −90 0 −20,000 −20,000 −1.0 −2.0
Upper 30,000 10,000 20,000 90 360 20,000 20,000 1.0 2.0

Optimal 11,914 7372 9985 64.8 186.4 −7225 2357 −0.13 −0.78
2.5% 11,720 6785 9593 63.7 186.1 −7413 2230 −0.22 −0.82

97.5% 12,223 7658 10229 65.9 187.0 −6975 2596 −0.08 −0.76
a Depth is the lower edge. b Strike slip is positive if right lateral and negative if left lateral. c Dip slip is positive for
thrust faulting and negative for normal faulting. Detailed parameter definitions can be found in [45]. (Geo-reference
point: 82.5◦ E, 35.6◦ N).

After 106 iterations, we removed a burn-in period of 1 × 104 iterations and retained the results
with the converged Markov chain. The retained candidate solutions are illustrated in Table 3 and
Figure 7. Besides the parameter of width having a strong correlation with some other parameters,
e.g., depth and X center, all other parameters demonstrated good statistical distribution, suggesting a
tight constraint for model solution with the uniform slip model.
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Table 3. Source parameters of the 2020 Yutian earthquake.

Model

Long. Lat. Strike Dip Rake Depth Length Width Slip a Moment
Mw

(◦) (◦) (◦) (◦) (◦) (km) (km) (km) (m) (1018 N·m)

USGS 82.379 35.596
24 42 −108

10.0 – – – 3.22 6.27
227 50 −74

GCMT 82.36 35.70
357 44 −11

13.3 – – – 3.29 6.28
213 52 −66

CENC 82.33 35.73 – – – 10 – – – – Ms
6.4

Uniform
82.420 35.621 186.4 64.8 −99 b 9.985 11.9 7.4 0.79

2.30 d 6.18
−0.3
+0.3
km

−0.2
+0.2
km

−0.4
+0.6

−1.8
+1.2 – −0.2

+0.4
−0.3
+0.3

−0.4
+0.1

−0.17
+0.04

Distributed 82.487
c

35.724
c 186.4 64.8 – 0c 24 20 – 2.69 d 6.23

a Total slip is calculated from strike-slip and dip-slip components. b Rake angle is calculated from strike-slip and
dip-slip components. c Top boundary initial location and depth. d Assuming a shear modulus of 3.3 × 1010 N/m2.
CENC, China Earthquakes Network Center.
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The optimal uniform slip model (Table 3) demonstrates that the 2020 Yutian event ruptured a fault
plane with a size of 11.9 × 7.37 km2, striking 186.4◦, and dipping at a high angle of 64.8◦. The main slip
consists of a normal slip of 0.78 m and left lateral slip of 0.13 m, which is concentrated between a depth
of 3.3 and 10.0 km and does not reach the surface. Note that the nodal plane solutions from USGS
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and GCMT along N–S striking are east-dipping with angles of 42◦ and 50◦, respectively. These double
solutions from USGS and GMCT with seismic wave give opposite fault dip trends in comparison to
our source model, suggesting an inconsistency between seismological and geodetic results. Assuming
a shear modulus of 33 GPa [19], the modelled geodetic moment is 2.3 × 1018 N·m, less than the GCMT
estimation of 3.29 × 1018 N·m.

As illustrated in Figure 8, the synthetic and relative residual displacements demonstrate that the
InSAR datasets fit our uniform model well. It is noted that the standard deviation of residuals of the
geodetic data for T165D and T158A is 1.1 cm and 1.4 cm for the model, respectively.
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Figure 8. (a,b) Synthetic and (c,d) residual displacement for interferograms of T165 and T158A, based on
the optimal uniform slip model in Table 3. The black line indicates the fault line projected on the surface
along its dip plane upward, and the black rectangular frame is the uniform slip plane in the subsurface.

In the next step, we estimated the variable slip distribution on a planar fault by fixing the fault
geometry shown in Table 3. To avoid the fault edge effects, we extended its length and width to 24 km
× 20 km, and then divided it into 1 km × 1 km patches (for a total of 480 patches). We considered the
slip rake angle varying −130◦ to −60◦. After that, we estimated the variable slip distribution with the
steepest descent method (SDM) [46]. A normalized smoothing factor of 0.12 was selected as a trade-off

of the slip roughness and root mean square (RMS) misfit. As shown in Figure 9, the preferred slip
distribution displays a simple oval pattern with one asperity, and its maximum slip is 0.85 m. The main
slip (>0.4 m), with a size of ~11 × 7 km2, is confined to a depth of 3.6–11.4 km. The rupture slip is
dominated by normal-slip, with a little strike-slip. The distributed slip model yields a geodetic moment
of 2.69 × 1018 N·m, equivalent to Mw 6.23, larger than that inferred from the uniform slip model.
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direction for each patch.

With the slip distribution model, the fitting residual errors for T165D and T158A are within a
standard deviation of 1 cm (Figure 10). The synthetic and relative residual displacement are improved
in comparison to the uniform slip model, even though there is some residual displacement near
the fault.
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distributed slip model in Table 1. The red line indicates the fault line extended for distributed slip
model inversion.

5. Local Extension Determined by Interseismic GPS

Since the 1990s, GPS measurements have been implemented in China and its neighboring
regions, providing crucial quantitative constraints for crustal motion research at various scales [47–49].



Remote Sens. 2020, 12, 3012 12 of 18

Given that previous GPS measurements were derived from different regional GPS networks and
reference epochs by different institutions, Wang et al. [49] reprocessed the raw GPS data included in all
previous studies and their own unpublished sites by using a rigorous data processing algorithm, to
produce a secular velocity solution with high spatial resolution for continental China. In this study,
we collected interseismic GPS observations from [49], as shown in Figure 11. The new GPS velocity
solutions unmask the Tibetan Plateau featuring a western extrusion rate of 6 mm/yr and eastward
extrusion rate of 20 mm/yr, divided by the pivot boundary at about 82 E◦ [49], close to the 2020
Yutian event.

In order to reveal both strong extensional motion and strike-slip in the Yutian area, we selected
GPS sites in two profile planes, A and B, throughout the area, and simply replotted their E–W and
N–S components, as shown in Figure 11. Profile A is mainly associated with the E–W extension and
shows a relative motion of ~7 mm/yr in the E-W direction and a few in the N–S direction. Profile B
reveals relative motion of 2–3 mm/yr in the E-W direction and ~8 mm/yr in the N–S direction. The N–S
motion of profile B is mainly associated with strike-slip motion attributed to the left-lateral strike-slip
Altyn–Tagh fault. We conclude that the Yutian region had a concentration of both strong strike-slip
and extensional motions.
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Figure 11. GPS velocities in Tibet (after [49]). Blue arrows represent horizontal GPS-derived interseismic
velocities with respect to stable Eurasia. Green and pink rectangle zones show GPS profiles A and
B, which were selected to analyze strike-slip and extension throughout the northwestern corner of
Tibet. The insert map shows E–W and N–S motion components for profiles A and B. In profile A,
green triangular points and gray square points indicate E–W and N–S motion components. In profile B,
pink triangular points and gray square points indicate N–S and E–W motion components.

6. Coulomb Stress Change Modeling

A slip that occurs on faults within the coseismic process changes the stress field in the surrounding
crust, thereby promoting or inhibiting local seismicity. The Coulomb stress failure criterion has
been widely employed to explore earthquake interactions since the 1990s, and has become a crucial
quantitative index to interpret stress field changes and seismic hazards [50]. The general hypothesis of
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Coulomb stress triggering is that a positive value promotes failure and a negative value inhibits failure.
A low Coulomb stress change of 0.1 bar was considered enough to trigger a future earthquake in a
previous study [51]. As Yutian is a strong seismic region, the Mw 6.2 event in 2020 was the fourth
Mw > 6 event in the region since 2008. To explore the relationship between the 2020 earthquake and
the other three events, we used the Coulomb v3.4 package developed by the USGS for Coulomb stress
change modeling in this study [52]. Note that there were no finite fault planes for the 2012 and 2014
events constrained by geodetic data; previous studies only employed the fault parameters derived
from seismologic data for Coulomb stress change analysis [52,53]. In addition, the 2008 event was
covered with incomplete InSAR data, resulting in fault parameters from previous studies having large
differences [11,20,22]. Therefore, we used the fault parameters for the 2008, 2012, and 2014 events
referring to [53,54] (detailed fault parameters can be found in Table 4). To some extent, these fault
parameters are roughly limited to present observations.

Table 4. The hypocentral and source parameters of the Mw > 6 earthquakes in the Yutian region after
the 20 March 2008 Yutian earthquake. Note that the hypocentral parameters represent the center of the
rectangle plane.

Event
Long. Lat. Depth Strike Dip Rake Length Width Slip

Mw Refer to
◦ ◦ km ◦ ◦ ◦ km km m

2008 81.39 35.42 10.0 354 47 -113 66 34 1.26 7.1 [55]

2012 82.435 35.59 7.8 14.7 50 -90 16.0 10 0.49 6.2 [54]

2014 82.50 36.10 10.1 240 71.9 -2.2 85 21 2.79 7.0 [55]

2020 82.50 35.60 6.7 186.4 64.8 -99.5 11.9 7.4 0.79 6.2 This
study

Taking the causative fault of the 2020 mainshock as a receiver fault, we calculated the static
Coulomb stress change from the previous three events and all four Mw > 6.0 events. Figure 12a
shows a positive Coulomb stress change region along the WNW direction between the 2008 and 2014
events. The epicenter of the Mw 6.2 earthquake in 2020 falls in the increased Coulomb stress region,
suggesting that previous events occurred to promote this event. Although this event partially released
the stress in the Yutian region (Figure 12b), the positive Coulomb stress change region still exists.
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Figure 12. Coulomb failure stress changes in the Yutian region at depth of 10 km. Static Coulomb
stress changes caused by (a) the Mw 7.1, the Mw 6.2, and the Mw 7.0 earthquakes in 2008, 2012,
and 2014, respectively; and (b) the Mw 7.1, the Mw 6.2, the Mw 7.0, and the Mw 6.2 earthquakes in
2008, 2012, 2014, and 2020, respectively. The receiver fault adopted the same fault parameters as the
mainshock of 2020, with strike of 186.4◦, dip of 64.8◦, and rake of −99.5◦; the friction coefficient is 0.4.
Rectangular frames represent locations of fault planes for the four events.



Remote Sens. 2020, 12, 3012 14 of 18

7. Discussion

Geodetic measurements from multi-geometric-view InSAR interferograms enable us to conclude
that the mechanism of the 2020 Yutian event is mainly normal-slip rupture. Different from GPS
measurements, InSAR only provides displacement observations in one dimension in the LOS direction,
and as a result it is hardly direct in judging the source mechanism of an earthquake by the coseismic
displacement itself. For the first- and second-generation SAR satellites (e.g., ERS-1/2 and Envisat),
most of the time only one geometric-view interferogram is available, such as only descending
interferograms for the four normal-faulting earthquakes in 1993 and 1996 [39]. Benefiting from the
design of systematic global monitoring, the third-generation Sentinel-1 SAR satellite has large-scale
coverage and a short revisit interval and its ascending and descending acquisition have been greatly
improved, which means we can observe coseismic deformations with different geometric views with
high quality [55]. In addition, multi-geometric-view observation provides more important information
than 1D regarding fault behavior and models [56]. Integrating the descending T165D and ascending
T158A interferograms from Sentinel-1 SAR data shows that the 2020 Yutian earthquake was dominated
by vertical deformation, involving a maximum subsidence of 25 cm, but minor uplift. According to
elastic dislocation theory, the 2020 Yutian event suggests a typical extensional mechanism similar to
the Mw 6.5 Norcia earthquake in Italy in 2016 [57].

Our source model indicates that the 2020 Yutian event ruptured an unknown high-angle blind
normal fault with N–S striking. Our uniform slip model with a global Bayesian inverse approach
indicates that this event dominated by normal slip ruptured a fault plane with a steep dip angle of 64.8◦

striking 186.4◦, which is not consistent with either nodal plane from USGS or GCMT. Besides this 2020
event, there are two other instrumentally documented normal events in the Yutian region, the Mw 7.1
and Mw 6.2 events in 2008 and 2016. There are many debates about the fault geometry of the 2008
Yutian event, but most of them agree on a high dip angle between 47◦ and 62◦ (e.g., [11,22]). The Mw 6.2
event in 2012 was out of geodetic constraints and there is no published investigation, but its source
mechanism from GCMT shows a nodal plane striking in the N–S direction with a dip angle of 55◦.
These normal faults in northern Tibet with high angles are different from normal faults with low angles
in the Yadong–Gulu and Lunggar rifts in southern Tibet. Kapp et al. [15] proposed that the Tibetan
rifts initiated as high-angle normal and evolved at low angle in response to increasing extension and
the rift basin being uplifted and eroded. Therefore, the normal fault in Yutian should be an early stage
of rift formation in Tibet. In addition, the distributed slip model in Figure 9 shows the rupture slip is
concentrated at a depth of 3.6–11.4 km, with no surface rupture. The main rupture depth of the 2020
event is similar to the depth of 0–15 km derived from the Mw 7.1 event in 2008 [11,22], but its released
moment was not enough to reach the surface, as the 2008 event was. From the geological investigation
of regional active faults by [12], it can be seen that the location of the causative fault for the 2020 event
was an unknown fault between Chung Muztagh mountains and Heishibei Lake. In comparison with
the known normal fault with east dipping on the east flank of Chung Muztagh mountains, the length
of the causative fault close to Heishibei Lake is much shorter but west-dipping. Given the relative
position and dipping trend of these two normal faults, they outline a complete graben structure in
this region.

The strong extensional setting in Yutian is supported by high seismicity with normal events.
Previous time series InSAR applied in the Yutian region exhibited only strong lateral-slip motion on
the Altyn–Tagh and Longmu–Gozha–co faults, but few extensional components [58,59]. However,
the GCMT earthquake catalogue verifies that the Yutian region has strong extensional motion by
frequent normal events. We speculate that previous time series InSAR results, limited by their
observation accuracy, cannot distinguish present extensional motion. Present dense interseismic GPS
measurements reveal both western and eastward extrusion in Tibet, and their pivot boundary is just
within the Yutian region [50]. We determined that those GPS data exhibit a total extensional motion
of ~7 mm/yr in the Yutian region. If all these extensions imposed one of these normal slip events,
i.e., the Mw 7.1 event in 2008 (with normal slip >5 m; e.g., [11,19,22]), the Mw 6.2 event in 2012 (with
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normal slip of 0.49 m; refer to [53]), or the Mw 6.2 event in 2020 (with normal slip of 0.8 m), the shortest
recurrence period of characteristic earthquakes is >70 years.

Note that the theoretical earthquake cycle (>70 years) is much longer than the 12 years for these
normal events. Two possible explanations have been proposed to address this problem. One explanation
is that there is seismic clustering behavior. If so, most of the Yutian region will lead to a long-lasting
quiet spell after these events. With the Coulomb stress change modeling, the 2020 event falls into
a region of positive stress change, suggesting that it would have been triggered by the previous
events. However, Bie et al. [53] inferred that the 2012 earthquake could not be explained in terms
of Coulomb stress change due to the 2008 Yutian earthquake, as its epicenter fell into the negative
stress change zone. Assuming that these Coulomb stress change values are reliable, the present normal
events in the Yutian region do not yield a clustering behavior. An alternative explanation is that there
should be lower lithospheric dynamics to simultaneous affect the nucleation of these normal events.
From a previous geological study [1], the large strike-slip faults in Tibet die out westward in the
Yutian region, suggesting an asthenosphere convection process. Seismic imaging profiles across Tibet
demonstrates that the Yutian region is located in the lithosphere–asthenosphere boundary between
the Indian and Asian tectonic plates [60]. In addition, present GPS measurements exhibit widespread
areal expansion within both southern and northern Tibet, suggesting that the plateau may have ceased
growing and entered the phase of reduced elevation [49]. Therefore, we are more inclined to accept the
latter explanation that normal faulting in northern Tibet is related to the lower lithospheric dynamics
to some extent. Recently, another Mw 6.3 normal-slip earthquake (July 2020) struck Nima County,
northern Tibet (Figure 2). Ongoing E–W thinning is also occurring in northern Tibet, which should be
received more attention in future work.

8. Conclusions

Surface deformation associated with the Mw 6.2 earthquake in Yutian in 2020 is revealed by
both descending and ascending Sentinel-1 interferograms, with LOS displacement ranging from
−22 to 10 cm. We used the finite fault dislocation model in an elastic half-space to estimate the causative
fault parameters. Our preferred model indicates that this event occurred on a N–S striking plane
dipping to the east at a high angle, and the main rupture dominated by normal slip was concentrated at
a depth of 3.6–11.4 km with a dip angle of 64.8◦. Combined with previous regional faults, this unknown
blind normal causative fault reveals graben tectonics between the Chung Muztagh mountains and
Heishibei Lake. With present interseismic GPS observations, a ~7 mm/yr E–W extension is inferred in
the Yutian region. We speculate that northern Tibet is presently experiencing ongoing E–W thinning,
and its normal faulting may be partly contributed by deep lithospheric evolution.
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