Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 2-substituted allylic amides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3439 KiB  
Article
Serendipitous Conversion of an Acetylamino Dideoxy-Octonic Acid Derivate into a Functionalized Carbohydrate–Pyrazole Conjugate and Investigation of the Method´s General Applicability
by Jelena K. Berl, Christian Czaschke, Ann-Kathrin Pramor, Christian B. W. Stark and Joachim Thiem
Molecules 2024, 29(20), 4885; https://doi.org/10.3390/molecules29204885 - 15 Oct 2024
Viewed by 1367
Abstract
By treatment of the peracetylated methylester of 4-acetylamino-2,4-dideoxy-d-glycero-d-galacto-octonic acid (ADOA-PAE) with nitrosyl tetrafluoroborate, a serendipitous formation of a highly functionalized carbohydrate–pyrazole conjugate was observed in 95% yield. This observation is remarkable, as it involves a five-step one-pot synthesis that [...] Read more.
By treatment of the peracetylated methylester of 4-acetylamino-2,4-dideoxy-d-glycero-d-galacto-octonic acid (ADOA-PAE) with nitrosyl tetrafluoroborate, a serendipitous formation of a highly functionalized carbohydrate–pyrazole conjugate was observed in 95% yield. This observation is remarkable, as it involves a five-step one-pot synthesis that proceeds via an 1,3-acyl shift and a 1,5-electrocyclization, which usually requires thermal conditions; however, the reaction occurred at a temperature of 0 °C. Additionally, the excellent yield of the carbohydrate-decorated pyrazole and the regiospecificity of the cyclization are of particular interest, as regioselectivity is always a challenge in pyrazole synthesis. Subsequently, this novel access to pyrazoles starting from N-acetyl-allyl amides via nitrosation and electrocyclization was investigated. In addition, mechanistic studies for the formation of substituted pyrazoles of type were carried out. Full article
Show Figures

Figure 1

15 pages, 2581 KiB  
Article
Organocatalytic Asymmetric Halocyclization of Allylic Amides to Chiral Oxazolines Using DTBM-SEGPHOS—Mechanistic Implications from Hammett Plots
by Fotini Moschona, Christina Misirlaki, Nikolaos Karadimas, Maria Koutiva, Ioanna Savvopoulou and Gerasimos Rassias
Symmetry 2022, 14(5), 989; https://doi.org/10.3390/sym14050989 - 12 May 2022
Cited by 1 | Viewed by 4832
Abstract
The intramolecular halocyclization of alkenes possessing an internal heteroatom nucleophile leads to multifunctional heterocycles which are useful versatile intermediates in organic synthesis. The asymmetric chlorocyclisation of 2-substituted allylic amides gives access to chiral oxazolines bearing a chloromethyl moiety for further synthetic manipulation. The [...] Read more.
The intramolecular halocyclization of alkenes possessing an internal heteroatom nucleophile leads to multifunctional heterocycles which are useful versatile intermediates in organic synthesis. The asymmetric chlorocyclisation of 2-substituted allylic amides gives access to chiral oxazolines bearing a chloromethyl moiety for further synthetic manipulation. The literature reports on this transformation involve complex syntheses of the 2-substituted allylic amides and cryogenic temperatures for achieving high enantioselectivities in the organocatalyzed halocyclization step. Based on the Heck reaction of aryl bromides and Boc-protected allylamine or allylamine benzamides, we developed a practical synthesis of 2-substituted allylic amides that does not require chromatography and accomplished their asymmetric halocyclization reaction with 24–92%ee under practical conditions (5 °C, CpME) catalyzed by (S)-(+)-DTBM-SEGPHOS. In addition, using appropriately substituted substrates, we generated Hammett plots and formulated a consistent mechanism for the halocyclization reaction which involves two competing modes of formation of the haliranium intermediate whose relative kinetics are governed by the electronic properties of the substrate. Full article
(This article belongs to the Special Issue Novel Approaches for Asymmetric Synthesis)
Show Figures

Figure 1

13 pages, 6942 KiB  
Article
Exploring the Scope of Tandem Palladium and Isothiourea Relay Catalysis for the Synthesis of α-Amino Acid Derivatives
by Jacqueline Bitai, Alexandra M. Z. Slawin, David B. Cordes and Andrew D. Smith
Molecules 2020, 25(10), 2463; https://doi.org/10.3390/molecules25102463 - 25 May 2020
Cited by 6 | Viewed by 4670
Abstract
The scope and limitations of a tandem N-allylation/[2,3]-rearrangement protocol are investigated through the incorporation of a variety of functional groups within an allylic phosphate precursor. This method uses readily accessible N,N-dimethylglycine aryl esters and functionalized allylic phosphates, forming quaternary ammonium salts in situ [...] Read more.
The scope and limitations of a tandem N-allylation/[2,3]-rearrangement protocol are investigated through the incorporation of a variety of functional groups within an allylic phosphate precursor. This method uses readily accessible N,N-dimethylglycine aryl esters and functionalized allylic phosphates, forming quaternary ammonium salts in situ in the presence of a palladium catalyst. Subsequent enantioselective [2,3]-sigmatropic rearrangement, promoted by the chiral isothiourea tetramisole, generates α-amino acid derivatives with two contiguous stereocenters. The incorporation of electron-withdrawing ester and amide groups gave the best results, furnishing the desired products in moderate to good yields (29–70%), with low diastereocontrol (typically 60:40 dr) but high enantioselectivity (up to 90:10 er). These results indicate that substrate–catalyst interactions in the proposed transition state are sensitive to the substitution pattern of the substrates. Full article
(This article belongs to the Special Issue New Synthetic Methods for Organic Compounds)
Show Figures

Figure 1

8 pages, 488 KiB  
Article
Synthesis and Fungicidal Activity of Lansiumamide A and B and Their Derivatives
by Huiyou Xu, Ting Chen, Luanbin Huang, Qiuju Shen, Zengwei Lian, Yan Shi, Ming-An Ouyang and Liyan Song
Molecules 2018, 23(7), 1499; https://doi.org/10.3390/molecules23071499 - 21 Jun 2018
Cited by 12 | Viewed by 4375
Abstract
A efficient 2-step protocol has been applied for the synthesis of Lansiumamide B (N-methyl-N-cis-styryl-cinnamamide, 2) derivatives by various substitution on the amide nitrogen with alkyl, allyl, propargyl, benzyl or ester groups. The structures of nine new [...] Read more.
A efficient 2-step protocol has been applied for the synthesis of Lansiumamide B (N-methyl-N-cis-styryl-cinnamamide, 2) derivatives by various substitution on the amide nitrogen with alkyl, allyl, propargyl, benzyl or ester groups. The structures of nine new compounds were characterized by HRMS, 1H NMR, and 13C NMR spectra. These compounds were tested in vitro against 10 strains of phytopathogenic fungi and showed a wide antifungal spectrum. The relationship between different substituents on the amide nitrogen and antifungal activity of Lansiumamide B derivatives were compared and analyzed. The result indicates that the length and steric hindrance of N-substitution have a significant impact on biological activities. It is noteworthy that the methyl or ethyl substituent on the amide nitrogen is critical for the antifungal activities. Full article
Show Figures

Graphical abstract

15 pages, 398 KiB  
Article
Synthesis of Regiospecifically Fluorinated Conjugated Dienamides
by Mohammad Chowdhury, Samir K. Mandal, Shaibal Banerjee and Barbara Zajc
Molecules 2014, 19(4), 4418-4432; https://doi.org/10.3390/molecules19044418 - 10 Apr 2014
Cited by 11 | Viewed by 6585
Abstract
Modular synthesis of regiospecifically fluorinated 2,4-diene Weinreb amides, with defined stereochemistry at both double bonds, was achieved via two sequential Julia-Kocienski olefinations. In the first step, a Z-a-fluorovinyl Weinreb amide unit with a benzothiazolylsulfanyl substituent at the allylic position was assembled. This [...] Read more.
Modular synthesis of regiospecifically fluorinated 2,4-diene Weinreb amides, with defined stereochemistry at both double bonds, was achieved via two sequential Julia-Kocienski olefinations. In the first step, a Z-a-fluorovinyl Weinreb amide unit with a benzothiazolylsulfanyl substituent at the allylic position was assembled. This was achieved via condensation of two primary building blocks, namely 2-(benzo[d]thiazol-2-ylsulfonyl)-2-fluoro-N-methoxy-N-methylacetamide (a Julia-Kocienski olefination reagent) and 2-(benzo[d]thiazol-2-ylthio)acetaldehyde (a bifunctional building block). This condensation was highly Z-selective and proceeded in a good 76% yield. Oxidation of benzothiazolylsulfanyl moiety furnished a second-generation Julia-Kocienski olefination reagent, which was used for the introduction of the second olefinic linkage via DBU-mediated condensations with aldehydes, to give (2Z,4E/Z)-dienamides in 50%–74% yield. Although olefinations were 4Z-selective, (2Z,4E/Z)-2-fluoro-2,4-dienamides could be readily isomerized to the corresponding 5-substituted (2Z,4E)-2-fluoro-N-methoxy-N-methylpenta-2,4-dienamides in the presence of catalytic iodine. Full article
(This article belongs to the Special Issue Fluorine Chemistry 2016)
Show Figures

Graphical abstract

Back to TopTop