Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = 2,2′-bipyrrole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1729 KiB  
Article
Functionalized 2,3′-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide
by Maxim D. Gotsko, Ivan V. Saliy, Igor A. Ushakov, Lyubov N. Sobenina and Boris A. Trofimov
Molecules 2024, 29(4), 885; https://doi.org/10.3390/molecules29040885 - 17 Feb 2024
Cited by 1 | Viewed by 1797
Abstract
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3′-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. [...] Read more.
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3′-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. In the t-BuONa/THF system, TosMIC acts in two directions: along with 2,3′-bipyrroles, the unexpected formation of pyrrolo[1,2-c]imidazoles is also observed (products ratio~1:1). Full article
Show Figures

Figure 1

4 pages, 586 KiB  
Short Note
4-Amino-5-benzoyl-1-benzyl-2-(4,5,6,7-tetrahydro-1H-indol-2-yl)-1H-pyrrole-3-carbonitrile
by Olga V. Petrova, Igor A. Ushakov, Lyubov N. Sobenina, Victoriya V. Kireeva and Boris A. Trofimov
Molbank 2023, 2023(1), M1547; https://doi.org/10.3390/M1547 - 12 Jan 2023
Viewed by 1382
Abstract
The title compound, 4-amino-5-benzoyl-1-benzyl-2-(4,5,6,7-tetrahydro-1H-indol-2-yl)- 1H-pyrrole-3-carbonitrile, was synthesized for the first time in a 40% yield by the reaction of N-benzyl-3-imino-5,6,7,8-tetrahydro-3H-pyrrolo[1,2-a]indol-1-amine and 1-chloroacetophenone in a K2CO3/MeCN system (reflux, 6 h). The product was characterized by 1H-NMR, 13C-NMR, IR spectroscopy, and elemental analysis. Full article
Show Figures

Scheme 1

18 pages, 3415 KiB  
Article
Facile Synthesis of NH-Free 5-(Hetero)Aryl-Pyrrole-2-Carboxylates by Catalytic C–H Borylation and Suzuki Coupling
by Saba Kanwal, Noor-ul- Ann, Saman Fatima, Abdul-Hamid Emwas, Meshari Alazmi, Xin Gao, Maha Ibrar, Rahman Shah Zaib Saleem and Ghayoor Abbas Chotana
Molecules 2020, 25(9), 2106; https://doi.org/10.3390/molecules25092106 - 30 Apr 2020
Cited by 5 | Viewed by 6581
Abstract
A convenient two-step preparation of NH-free 5-aryl-pyrrole-2-carboxylates is described. The synthetic route consists of catalytic borylation of commercially available pyrrole-2-carboxylate ester followed by Suzuki coupling without going through pyrrole N–H protection and deprotection steps. The resulting 5-aryl substituted pyrrole-2-carboxylates were synthesized in good- [...] Read more.
A convenient two-step preparation of NH-free 5-aryl-pyrrole-2-carboxylates is described. The synthetic route consists of catalytic borylation of commercially available pyrrole-2-carboxylate ester followed by Suzuki coupling without going through pyrrole N–H protection and deprotection steps. The resulting 5-aryl substituted pyrrole-2-carboxylates were synthesized in good- to excellent yields. This synthetic route can tolerate a variety of functional groups including those with acidic protons on the aryl bromide coupling partner. This methodology is also applicable for cross-coupling with heteroaryl bromides to yield pyrrole-thiophene, pyrrole-pyridine, and 2,3’-bi-pyrrole based bi-heteroaryls. Full article
(This article belongs to the Special Issue Advances in Cross-Coupling Reactions)
Show Figures

Graphical abstract

11 pages, 2989 KiB  
Article
Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability
by Robert Texidó, Gonzalo Anguera, Sergi Colominas, Salvador Borrós and David Sánchez-García
Polymers 2019, 11(6), 1068; https://doi.org/10.3390/polym11061068 - 20 Jun 2019
Cited by 8 | Viewed by 4000
Abstract
The synthesis of 2,2′-bipyrroles substituted at positions 5,5′ with pyrrolyl, N-methyl-pyrrolyl and thienyl groups and their application in the preparation of conducting polymers is reported herein. The preparation of these monomers consisted of two synthetic steps from a functionalized 2,2′-bipyrrole: Bromination of [...] Read more.
The synthesis of 2,2′-bipyrroles substituted at positions 5,5′ with pyrrolyl, N-methyl-pyrrolyl and thienyl groups and their application in the preparation of conducting polymers is reported herein. The preparation of these monomers consisted of two synthetic steps from a functionalized 2,2′-bipyrrole: Bromination of the corresponding 2,2′-bipyrrole followed by Suzuki or Stille couplings. These monomers display low oxidation potential compared to pyrrole because of the extended length of their conjugation pathway. The resulting monomers can be polymerized through oxidative/electropolymerization. Electrical conductivity and electrochromic properties of the electrodeposited polymeric films were evaluated using 4-point probe measurements and cyclic voltammetry to evaluate their applicability in electronics. Full article
Show Figures

Figure 1

9 pages, 743 KiB  
Article
Traceless Solid-Phase Synthesis of Ketones via Acid-Labile Enol Ethers: Application in the Synthesis of Natural Products and Derivatives
by Eva Schütznerová, Anna Krchňáková and Viktor Krchňák
Molecules 2019, 24(7), 1406; https://doi.org/10.3390/molecules24071406 - 10 Apr 2019
Cited by 5 | Viewed by 3859
Abstract
In solid-phase organic synthesis, Wang resin is traditionally used for the immobilization of acids, alcohols, phenols, and amines. We report the use of Wang resin for the traceless synthesis of ketones via acid-labile enol ethers. We demonstrate the practicality of this synthetic strategy [...] Read more.
In solid-phase organic synthesis, Wang resin is traditionally used for the immobilization of acids, alcohols, phenols, and amines. We report the use of Wang resin for the traceless synthesis of ketones via acid-labile enol ethers. We demonstrate the practicality of this synthetic strategy on the solid-phase synthesis of pyrrolidine-2,4-diones, which represent the core structure of several natural products, including tetramic acid. Base-triggered condensation of pyrrolidine-2,4-diones yielded 4-hydroxy-1,1′,2′,5-tetrahydro-2H,5′H-[3,3′-bipyrrole]-2,5′-diones. Full article
(This article belongs to the Special Issue Modern Strategies for Heterocycle Synthesis)
Show Figures

Graphical abstract

12 pages, 2152 KiB  
Article
Synthesis, Crystal Structure, and Photoluminescent Properties of 3,3′,4,4′-Tetraethyl-5,5′-divinyl-2,2′-bipyrrole Derivatives
by Toru Okawara, Reo Kawano, Hiroya Morita, Alan Finkelstein, Renjiro Toyofuku, Kanako Matsumoto, Kenji Takehara, Toshihiko Nagamura, Seiji Iwasa and Sanjai Kumar
Molecules 2017, 22(11), 1816; https://doi.org/10.3390/molecules22111816 - 26 Oct 2017
Cited by 5 | Viewed by 5377
Abstract
Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation. For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituric acid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescent properties of the synthesized divinylbipyrroles in dichloromethane were found to be [...] Read more.
Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation. For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituric acid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescent properties of the synthesized divinylbipyrroles in dichloromethane were found to be dependent on the presence of electron withdrawing groups at the vinylic terminal. The divinylbipyrroles derived from malononitrile, Meldrum’s acid, and 1,3-dimethylbarbituric acid showed fluorescent peaks at 553, 576, and 602 nm respectively. Computational studies indicated that the alkyl substituents on the bipyrrole 3 and 3′ positions increased energy level of the highest occupied molecular orbital (HOMO) compared to the unsubstituted derivatives and provided rationale for the bathochromic shift of the ultraviolet-visible (UV-Vis) spectra compared to the previously reported analogs. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop