Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibrils (CNF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2772 KiB  
Article
Composite Films of Nanofibrillated Cellulose with Sepiolite: Effect of Preparation Strategy
by Luís Alves, Ana Ramos, Maria G. Rasteiro, Carla Vitorino, Eduardo Ferraz, Paulo J. T. Ferreira, Maria L. Puertas and José A. F. Gamelas
Coatings 2022, 12(3), 303; https://doi.org/10.3390/coatings12030303 - 23 Feb 2022
Cited by 12 | Viewed by 5049
Abstract
Cellulose nanofibrils (CNFs) are nanomaterials with promising properties to be used in food packaging and printed electronics, thus being logical substitutes to petroleum-based polymers, specifically plastics. CNFs can be combined with other materials, such as clay minerals, to form composites, which are environmentally [...] Read more.
Cellulose nanofibrils (CNFs) are nanomaterials with promising properties to be used in food packaging and printed electronics, thus being logical substitutes to petroleum-based polymers, specifically plastics. CNFs can be combined with other materials, such as clay minerals, to form composites, which are environmentally friendly materials, with acceptable costs and without compromising the final properties of the composite material. To produce composite films, two strategies can be used: solvent casting and filtration followed by hot pressing. The first approach is the simplest way to produce films, but the obtained films may present some limitations. In the present work, CNFs produced using enzymatic or TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation pretreatments, followed by high-pressure homogenization, or only by mechanical treatment (homogenization), were used to produce films by both the available procedures. The films obtained by filtration + hot pressing presented higher tensile strength and Young’s modulus compared with those obtained by solvent casting. In general, a decrease in the values of these mechanical properties of the films and a decrease in elongation at break, with the addition of sepiolite, were also observed. However, for the TEMPO CNF-based films, an improvement in tensile strength could be observed for 10% of the sepiolite content. Furthermore, the time necessary to produce films was largely reduced by employing the filtration procedure. Finally, the water vapour barrier properties of the films obtained by filtration are comparable to the literature values of net CNF films. Thus, this technique demonstrates to be the most suitable to produce CNF-based composite films in a fast way and with improved mechanical properties and suitable gas barrier properties. Full article
(This article belongs to the Special Issue Green Polymer Coatings and Films for Food and Health Applications)
Show Figures

Graphical abstract

17 pages, 2685 KiB  
Article
Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose
by Carolina Reyes, Alexandre Poulin, Gustav Nyström, Francis W. M. R. Schwarze and Javier Ribera
J. Fungi 2021, 7(3), 222; https://doi.org/10.3390/jof7030222 - 18 Mar 2021
Cited by 19 | Viewed by 4679
Abstract
White-rot fungi can degrade all lignocellulose components due to their potent lignin and cellulose-degrading enzymes. In this study, five white-rot fungi, Trametes versicolor, Trametes pubescens, Ganoderma adspersum, Ganoderma lipsiense, and Rigidoporus vitreus were tested for endoglucanase, laccase, urease, and glucose-6-phosphate [...] Read more.
White-rot fungi can degrade all lignocellulose components due to their potent lignin and cellulose-degrading enzymes. In this study, five white-rot fungi, Trametes versicolor, Trametes pubescens, Ganoderma adspersum, Ganoderma lipsiense, and Rigidoporus vitreus were tested for endoglucanase, laccase, urease, and glucose-6-phosphate (G6P) production when grown with malt extract and nanocellulose in the form of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC). Results show that temperature plays a key role in controlling the growth of all five fungi when cultured with malt extract alone. Endoglucanase activities were highest in cultures of G. adspersum and G. lipsiense and laccase activities were highest in cultures of T. versicolor and R. vitreus. Urease activities were highest in cultures of G. adspersum, G. lipsiense, and R. vitreus. Glucose-6-phosphate levels also indicate that cells were actively metabolizing glucose present in the cultures. These results show that TEMPO-oxidized CNF and CNC do not inhibit the production of specific lignocellulose enzymes by these white-rot fungi. The apparent lack of enzymatic inhibition makes TEMPO-oxidized CNF and CNC excellent candidates for future biotechnological applications in combination with the white-rot fungi studied here. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

13 pages, 1390 KiB  
Article
Cellulose Nanofibril (CNF) Films and Xylan from Hot Water Extracted Birch Kraft Pulps
by Marc Borrega and Hannes Orelma
Appl. Sci. 2019, 9(16), 3436; https://doi.org/10.3390/app9163436 - 20 Aug 2019
Cited by 24 | Viewed by 5132
Abstract
The effects of xylan extraction from birch kraft pulp on the manufacture and properties of cellulose nanofibril (CNF) films were here investigated. Hot water extractions of bleached and unbleached kraft pulps were performed in a flow-through system to remove and recover the xylan. [...] Read more.
The effects of xylan extraction from birch kraft pulp on the manufacture and properties of cellulose nanofibril (CNF) films were here investigated. Hot water extractions of bleached and unbleached kraft pulps were performed in a flow-through system to remove and recover the xylan. After the extraction, the pulps were oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and fibrillated in a high-pressure microfluidizer. Compared to CNF from bleached kraft pulp, the CNF dispersions obtained from water-extracted pulps were less viscous and generally contained a higher amount of microfiber fragments, although smaller in size. In all cases, however, smooth and highly transparent films were produced from the CNF dispersions after the addition of sorbitol as plasticizer. The CNF films made from water-extracted pulps showed a lower tensile strength and ductility, probably due to their lower xylan content, but the stiffness was only reduced by the presence of lignin. Interestingly, the CNF films from water-extracted bleached pulps were less hydrophilic, and their water vapour permeability was reduced up to 25%. Therefore, hot water extraction of bleached birch kraft pulp could be used to produce CNF films with improved barrier properties for food packaging, while obtaining a high-purity xylan stream for other high-value applications. Full article
(This article belongs to the Special Issue Cellulosic Nanofibers and Their Applications)
Show Figures

Figure 1

23 pages, 9942 KiB  
Article
Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites
by Eftihia Barnes, Jennifer A. Jefcoat, Erik M. Alberts, Mason A. McKechnie, Hannah R. Peel, J. Paige Buchanan, Charles A. Weiss Jr., Kyle L. Klaus, L. Christopher Mimun and Christopher M. Warner
Polymers 2019, 11(7), 1091; https://doi.org/10.3390/polym11071091 - 27 Jun 2019
Cited by 43 | Viewed by 7187
Abstract
Cellulose nanofibrils (CNFs) are high aspect ratio, natural nanomaterials with high mechanical strength-to-weight ratio and promising reinforcing dopants in polymer nanocomposites. In this study, we used CNFs and oxidized CNFs (TOCNFs), prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation process, as reinforcing agents in [...] Read more.
Cellulose nanofibrils (CNFs) are high aspect ratio, natural nanomaterials with high mechanical strength-to-weight ratio and promising reinforcing dopants in polymer nanocomposites. In this study, we used CNFs and oxidized CNFs (TOCNFs), prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation process, as reinforcing agents in poly(vinylidene fluoride) (PVDF). Using high-shear mixing and doctor blade casting, we prepared free-standing composite films loaded with up to 5 wt % cellulose nanofibrils. For our processing conditions, all CNF/PVDF and TOCNF/PVDF films remain in the same crystalline phase as neat PVDF. In the as-prepared composites, the addition of CNFs on average increases crystallinity, whereas TOCNFs reduces it. Further, addition of CNFs and TOCNFs influences properties such as surface wettability, as well as thermal and mechanical behaviors of the composites. When compared to neat PVDF, the thermal stability of the composites is reduced. With regards to bulk mechanical properties, addition of CNFs or TOCNFs, generally reduces the tensile properties of the composites. However, a small increase (~18%) in the tensile modulus was observed for the 1 wt % TOCNF/PVDF composite. Surface mechanical properties, obtained from nanoindentation, show that the composites have enhanced performance. For the 5 wt % CNF/PVDF composite, the reduced modulus and hardness increased by ~52% and ~22%, whereas for the 3 wt % TOCNF/PVDF sample, the increase was ~23% and ~25% respectively. Full article
(This article belongs to the Special Issue Nanostructured Polymers and Nanocomposites)
Show Figures

Graphical abstract

13 pages, 18944 KiB  
Article
Flexible and Lightweight Lithium-Ion Batteries Based on Cellulose Nanofibrils and Carbon Fibers
by Huiran Lu, Johan Hagberg, Göran Lindbergh and Ann Cornell
Batteries 2018, 4(2), 17; https://doi.org/10.3390/batteries4020017 - 2 Apr 2018
Cited by 14 | Viewed by 9508
Abstract
Flexible, low-weight electrodes with integrated current collectors based on chopped polyacrylonitrile carbon fibers (CF) were produced using an easy, aqueous fabrication process, where only 4 wt% of TEMPO-oxidized cellulose nanofibrils (CNF) were used as the binder. A flexible full cell was assembled based [...] Read more.
Flexible, low-weight electrodes with integrated current collectors based on chopped polyacrylonitrile carbon fibers (CF) were produced using an easy, aqueous fabrication process, where only 4 wt% of TEMPO-oxidized cellulose nanofibrils (CNF) were used as the binder. A flexible full cell was assembled based on a LiFePO4 (LFP) positive electrode with a CF current collector and a current collector-free CF negative electrode. The cell exhibited a stable specific capacity of 121 mAh g−1 based on the LFP weight. The CF in the negative electrode acted simultaneously as active material and current collector, which has a significant positive impact on energy density. Stable specific capacities of the CF/CNF negative electrode of 267 mAh g−1 at 0.1 C and 150 mAh g−1 at 1 C are demonstrated. The LFP/CNF with CF/CNF, as the current collector positive electrode (LFP-CF), exhibited a good rate performance with a capacity of ~150 mAh g−1 at 0.1 C and 133 mAh g−1 at 1 C. The polarization of the LFP-CF electrode was similar to that of a commercial Quallion LFP electrode, while much lower compared to a flexible LFP/CNF electrode with Al foil as the current collector. This is ascribed to good contact between the CF and the active material. Full article
(This article belongs to the Special Issue Innovations in Paper-based Flexible Batteries)
Show Figures

Graphical abstract

Back to TopTop