Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = 18F-FET PET/CT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2151 KiB  
Systematic Review
Optimizing Stereotactic Intracranial Neoplasm Treatment: A Systematic Review of PET Integration with Gamma Knife Radiosurgery
by Robert C. Subtirelu, Eric M. Teichner, Milo Writer, Kevin Bryan, Shiv Patil, Talha Khan, Lancelot Herpin, Raj N. Patel, Emily Christner, Chitra Parikh, Thomas Werner, Abass Alavi and Mona-Elisabeth Revheim
Diseases 2025, 13(7), 215; https://doi.org/10.3390/diseases13070215 - 10 Jul 2025
Viewed by 374
Abstract
Objective: Traditional imaging modalities for the planning of Gamma Knife radiosurgery (GKRS) are non-specific and do not accurately delineate intracranial neoplasms. This study aimed to evaluate the utility of positron emission tomography (PET) for the planning of GKRS for intracranial neoplasms (ICNs) and [...] Read more.
Objective: Traditional imaging modalities for the planning of Gamma Knife radiosurgery (GKRS) are non-specific and do not accurately delineate intracranial neoplasms. This study aimed to evaluate the utility of positron emission tomography (PET) for the planning of GKRS for intracranial neoplasms (ICNs) and the post-GKRS applications of PET for patient care. Methods: PubMed, Scopus, and ScienceDirect were searched in order to assemble relevant studies regarding the uses of PET in conjunction with GKRS for ICN treatment. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to identify relevant studies on the use of PET in conjunction with GKRS. Particular emphasis was placed on review articles and medical research investigating tumor delineation and post-operative care. Relevant studies were selected and assessed based on quality measures, including study design, sample size, and significance. Inclusion and exclusion criteria were used to examine the yield of the initial search (n = 105). After a secondary review, the included results were identified (n = 50). Results: This study revealed that PET imaging is highly accurate for the planning of GKRS. In fact, many cases indicate that it is more specific than traditional imaging modalities. PET is also capable of complementing traditional imaging techniques through combination imaging. This showed significant efficacy for the planning of GKRS for ICNs. Conclusions: While PET shows a multitude of applications for the treatment of ICNs with GKRS, further research is necessary to assemble a complete set of clinical guidelines for treatment specifications. Importantly, future studies need a greater standardization of methods and expanded trials with a multitude of radiotracers. Full article
Show Figures

Figure 1

18 pages, 1127 KiB  
Review
Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals
by Alberto Miceli, Virginia Liberini, Giovanna Pepe, Francesco Dondi, Antonio Vento, Lorenzo Jonghi Lavarini, Greta Celesti, Maria Gazzilli, Francesca Serani, Priscilla Guglielmo, Ambra Buschiazzo, Rossella Filice, Pierpaolo Alongi, Riccardo Laudicella and Giulia Santo
Diagnostics 2024, 14(10), 1002; https://doi.org/10.3390/diagnostics14101002 - 13 May 2024
Cited by 5 | Viewed by 2613
Abstract
Background: Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein overexpressed on the surface of tumor cells in most of the patients affected by prostate adenocarcinoma (PCa). However, PSMA expression has also been demonstrated in the endothelial cells of newly formed vessels [...] Read more.
Background: Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein overexpressed on the surface of tumor cells in most of the patients affected by prostate adenocarcinoma (PCa). However, PSMA expression has also been demonstrated in the endothelial cells of newly formed vessels of various solid tumors, suggesting a role for PSMA in neoangiogenesis. In this scenario, gallium-68 (68Ga) or fluoro-18 (18F)-labeled PSMA positron emission tomography (PET) may play a role in tumors other than PCa, generally evaluated employing other radiopharmaceuticals targeting different pathways. This review aims to investigate the detection rate of PSMA-PET compared to other radiopharmaceuticals (especially [18F]FDG) in non-prostate tumors to identify patients who may benefit from the use of such a theragnostic agent. Methods: We performed a bibliographic search on three different databases until February 2024 using the following terms: “positron emission tomography”, “PET”, “PET/CT”, “Prostate-specific membrane antigen”, “PSMA”, “non-prostate”, “not prostate cancer”, “solid tumor”, “FDG”, “Fluorodeoxyglucose”, “FAPi”, “FET”, “MET”, “DOPA”, “choline”, “FCH”, “FES”, “DOTATOC”, “DOTANOC”, and “DOTATATE”. Only original articles edited in English with at least 10 patients were included. Results: Out of a total of 120 articles, only 25 original articles comparing PSMA with other radiotracers were included in this study. The main evidence was demonstrated in renal cell carcinoma, where PSMA showed a higher detection rate compared to [18F]FDG PET/CT, with implications for patient management. PSMA PET may also improve the assessment of other entities, such as gliomas, in defining regions of early neoangiogenesis. Further data are needed to evaluate the potential role of PSMA-PET in triple-negative breast cancer as a novel therapeutic vascular target. Finally, unclear applications of PSMA-PET include thyroid and gastrointestinal tumors. Conclusions: The present review shows the potential use of PSMA-labeled PET/CT in solid tumors beyond PCa, underlining its value over other radiopharmaceuticals (mainly [18F]FDG). Prospective clinical trials with larger sample sizes are crucial to further investigate these possible clinical applications. Full article
(This article belongs to the Special Issue The Use of PSMA in Nuclear Medicine beyond Prostate Cancer)
Show Figures

Figure 1

14 pages, 3135 KiB  
Article
Correlation between rCBV Delineation Similarity and Overall Survival in a Prospective Cohort of High-Grade Gliomas Patients: The Hidden Value of Multimodal MRI?
by Amina Latreche, Gurvan Dissaux, Solène Querellou, Doria Mazouz Fatmi, François Lucia, Anais Bordron, Alicia Vu, Ruben Touati, Victor Nguyen, Mohamed Hamya, Brieg Dissaux and Vincent Bourbonne
Biomedicines 2024, 12(4), 789; https://doi.org/10.3390/biomedicines12040789 - 3 Apr 2024
Cited by 1 | Viewed by 1947
Abstract
Purpose: The accuracy of target delineation in radiation treatment planning of high-grade gliomas (HGGs) is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Magnetic resonance imaging (MRI) represents the standard imaging modality for delineation of gliomas with inherent limitations in accurately [...] Read more.
Purpose: The accuracy of target delineation in radiation treatment planning of high-grade gliomas (HGGs) is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Magnetic resonance imaging (MRI) represents the standard imaging modality for delineation of gliomas with inherent limitations in accurately determining the microscopic extent of tumors. The purpose of this study was to assess the survival impact of multi-observer delineation variability of multiparametric MRI (mpMRI) and [18F]-FET PET/CT. Materials and Methods: Thirty prospectively included patients with histologically confirmed HGGs underwent a PET/CT and mpMRI including diffusion-weighted imaging (DWI: b0, b1000, ADC), contrast-enhanced T1-weighted imaging (T1-Gado), T2-weighted fluid-attenuated inversion recovery (T2Flair), and perfusion-weighted imaging with computation of relative cerebral blood volume (rCBV) and K2 maps. Nine radiation oncologists delineated the PET/CT and MRI sequences. Spatial similarity (Dice similarity coefficient: DSC) was calculated between the readers for each sequence. Impact of the DSC on progression-free survival (PFS) and overall survival (OS) was assessed using Kaplan–Meier curves and the log-rank test. Results: The highest DSC mean values were reached for morphological sequences, ranging from 0.71 +/− 0.18 to 0.84 +/− 0.09 for T2Flair and T1Gado, respectively, while metabolic volumes defined by PET/CT achieved a mean DSC of 0.75 +/− 0.11. rCBV variability (mean DSC0.32 +/− 0.20) significantly impacted PFS (p = 0.02) and OS (p = 0.002). Conclusions: Our data suggest that the T1-Gado and T2Flair sequences were the most reproducible sequences, followed by PET/CT. Reproducibility for functional sequences was low, but rCBV inter-reader similarity significantly impacted PFS and OS. Full article
(This article belongs to the Special Issue Glioblastoma: Current Status and Future Prospects)
Show Figures

Figure 1

13 pages, 2678 KiB  
Article
Prediction of Glioma Grade and IDH Status Using 18F-FET PET/CT Dynamic and Multiparametric Texture Analysis
by Rami Hajri, Marie Nicod-Lalonde, Andreas F. Hottinger, John O. Prior and Vincent Dunet
Diagnostics 2023, 13(15), 2604; https://doi.org/10.3390/diagnostics13152604 - 5 Aug 2023
Cited by 5 | Viewed by 2688
Abstract
Mutations in isocitrate dehydrogenase (IDH) represent an independent predictor of better survival in patients with gliomas. We aimed to assess grade and IDH mutation status in patients with untreated gliomas, by evaluating the respective value of 18F-FET PET/CT via dynamic and texture [...] Read more.
Mutations in isocitrate dehydrogenase (IDH) represent an independent predictor of better survival in patients with gliomas. We aimed to assess grade and IDH mutation status in patients with untreated gliomas, by evaluating the respective value of 18F-FET PET/CT via dynamic and texture analyses. A total of 73 patients (male: 48, median age: 47) who underwent an 18F-FET PET/CT for initial glioma evaluation were retrospectively included. IDH status was available in 61 patients (20 patients with WHO grade 2 gliomas, 41 with grade 3–4 gliomas). Time–activity curve type and 20 parameters obtained from static analysis using LIFEx© v6.30 software were recorded. Respective performance was assessed using receiver operating characteristic curve analysis and stepwise multivariate regression analysis adjusted for patients’ age and sex. The time–activity curve type and texture parameters derived from the static parameters showed satisfactory-to-good performance in predicting glioma grade and IDH status. Both time–activity curve type (stepwise OR: 101.6 (95% CI: 5.76–1791), p = 0.002) and NGLDM coarseness (stepwise OR: 2.08 × 1043 (95% CI: 2.76 × 1012–1.57 × 1074), p = 0.006) were independent predictors of glioma grade. No independent predictor of IDH status was found. Dynamic and texture analyses of 18F-FET PET/CT have limited predictive value for IDH status when adjusted for confounding factors. However, they both help predict glioma grade. Full article
(This article belongs to the Special Issue Advanced Brain Tumor Imaging)
Show Figures

Figure 1

13 pages, 1729 KiB  
Systematic Review
Head-to-Head Comparison between FDG and 11C-Methionine in Multiple Myeloma: A Systematic Review
by Luca Filippi, Viviana Frantellizzi, Paola Bartoletti, Giuseppe De Vincentis, Orazio Schillaci and Laura Evangelista
Diagnostics 2023, 13(12), 2009; https://doi.org/10.3390/diagnostics13122009 - 9 Jun 2023
Cited by 6 | Viewed by 1758
Abstract
The aim of this systematic review is to provide a comprehensive overview of the existing literature, comparing 18F-fluorodeoxyglucose (FDG) and 11C-methionine (MET) for the imaging of multiple myeloma (MM) with positron emission computed tomography (PET/CT). Relevant studies published from 2013 up [...] Read more.
The aim of this systematic review is to provide a comprehensive overview of the existing literature, comparing 18F-fluorodeoxyglucose (FDG) and 11C-methionine (MET) for the imaging of multiple myeloma (MM) with positron emission computed tomography (PET/CT). Relevant studies published from 2013 up to March 2023 were selected by searching Scopus, PubMed, and Web of Science. Selected imaging studies were analyzed using a modified version of the critical Appraisal Skills Programme (CASP). Ten studies encompassing 335 patients were selected. On a patient-based analysis, MET sensitivity ranged between 75.6% and 100%, resulting higher than that measured for FDG (0–100%). MET outperformed FDG for the detection of focal lesions, diffuse bone marrow involvement and mixed patterns. PET-derived parameters resulted higher for MET than for FDG, with a strong correlation with clinical variables (e.g., monoclonal component and beta-2-microglobulin levels, bone marrow infiltration, etc.), although FDG maintained a prognostic impact on outcome prediction. When compared to other tracers or imaging modalities, MET showed stronger correlation and inter-observer agreement than FDG. Although biased by the small cohorts and requiring confirmation through multicenter studies, preliminary findings suggest that MET–PET should be preferred to FDG for PET imaging of MM, or alternatively used as a complementary imaging modality. Some issues, such as tracer availability and the role of MET with respect to other emerging tracers (i.e., 68Ga-pentixafor, 18F-FACBC and 18F-FET), should be the topic of further investigations. Full article
(This article belongs to the Special Issue What's New in Diagnostic Radiological Imaging?)
Show Figures

Figure 1

38 pages, 15560 KiB  
Review
Continuing Challenges in the Definitive Diagnosis of Cushing’s Disease: A Structured Review Focusing on Molecular Imaging and a Proposal for Diagnostic Work-Up
by Tessa N. A. Slagboom, Dirk Jan Stenvers, Elsmarieke van de Giessen, Stefan D. Roosendaal, Maartje M. L. de Win, Joseph C. J. Bot, Eleonora Aronica, René Post, Jantien Hoogmoed, Madeleine L. Drent and Alberto M. Pereira
J. Clin. Med. 2023, 12(8), 2919; https://doi.org/10.3390/jcm12082919 - 17 Apr 2023
Cited by 6 | Viewed by 3068
Abstract
The definitive diagnosis of Cushing’s disease (CD) in the presence of pituitary microadenoma remains a continuous challenge. Novel available pituitary imaging techniques are emerging. This study aimed to provide a structured analysis of the diagnostic accuracy as well as the clinical use of [...] Read more.
The definitive diagnosis of Cushing’s disease (CD) in the presence of pituitary microadenoma remains a continuous challenge. Novel available pituitary imaging techniques are emerging. This study aimed to provide a structured analysis of the diagnostic accuracy as well as the clinical use of molecular imaging in patients with ACTH-dependent Cushing’s syndrome (CS). We also discuss the role of multidisciplinary counseling in decision making. Additionally, we propose a complementary diagnostic algorithm for both de novo and recurrent or persistent CD. A structured literature search was conducted and two illustrative CD cases discussed at our Pituitary Center are presented. A total of 14 CD (n = 201) and 30 ectopic CS (n = 301) articles were included. MRI was negative or inconclusive in a quarter of CD patients. 11C-Met showed higher pituitary adenoma detection than 18F-FDG PET–CT (87% versus 49%). Up to 100% detection rates were found for 18F-FET, 68Ga-DOTA-TATE, and 68Ga-DOTA-CRH, but were based on single studies. The use of molecular imaging modalities in the detection of pituitary microadenoma in ACTH-dependent CS is of added and complementary value, serving as one of the available tools in the diagnostic work-up. In selected CD cases, it seems justified to even refrain from IPSS. Full article
(This article belongs to the Special Issue Management of Pituitary Tumors: Current and Future Treatment Options)
Show Figures

Figure 1

13 pages, 5492 KiB  
Article
Therapy Defining at Initial Diagnosis of Primary Brain Tumor—The Role of 18F-FET PET/CT and MRI
by Dávid Gergő Nagy, Imre Fedorcsák, Attila György Bagó, Georgina Gáti, János Martos, Péter Szabó, Hajnalka Rajnai, István Kenessey and Katalin Borbély
Biomedicines 2023, 11(1), 128; https://doi.org/10.3390/biomedicines11010128 - 4 Jan 2023
Cited by 4 | Viewed by 7107
Abstract
Primary malignant brain tumors are heterogeneous and infrequent neoplasms. Their classification, therapeutic regimen and prognosis have undergone significant development requiring the innovation of an imaging diagnostic. The performance of enhanced magnetic resonance imaging depends on blood–brain barrier function. Several studies have demonstrated the [...] Read more.
Primary malignant brain tumors are heterogeneous and infrequent neoplasms. Their classification, therapeutic regimen and prognosis have undergone significant development requiring the innovation of an imaging diagnostic. The performance of enhanced magnetic resonance imaging depends on blood–brain barrier function. Several studies have demonstrated the advantages of static and dynamic amino acid PET/CT providing accurate metabolic status in the neurooncological setting. The aim of our single-center retrospective study was to test the primary diagnostic role of amino acid PET/CT compared to enhanced MRI. Emphasis was placed on cases prior to intervention, therefore, a certain natural bias was inevitable. In our analysis for newly found brain tumors 18F-FET PET/CT outperformed contrast MRI and PWI in terms of sensitivity and negative predictive value (100% vs. 52.9% and 36.36%; 100% vs. 38.46% and 41.67%), in terms of positive predictive value their performance was roughly the same (84.21 % vs. 90% and 100%), whereas regarding specificity contrast MRI and PWI were superior (40% vs. 83.33% and 100%). Based on these results the superiority of 18F-FET PET/CT seems to present incremental value during the initial diagnosis. In the case of non-enhancing tumors, it should always be suggested as a therapy-determining test. Full article
Show Figures

Figure 1

17 pages, 3082 KiB  
Article
Hotspot on 18F-FET PET/CT to Predict Aggressive Tumor Areas for Radiotherapy Dose Escalation Guiding in High-Grade Glioma
by Bastien Allard, Brieg Dissaux, David Bourhis, Gurvan Dissaux, Ulrike Schick, Pierre-Yves Salaün, Ronan Abgral and Solène Querellou
Cancers 2023, 15(1), 98; https://doi.org/10.3390/cancers15010098 - 23 Dec 2022
Cited by 8 | Viewed by 2448
Abstract
The standard therapy strategy for high-grade glioma (HGG) is based on the maximal surgery followed by radio-chemotherapy (RT-CT) with insufficient control of the disease. Recurrences are mainly localized in the radiation field, suggesting an interest in radiotherapy dose escalation to better control the [...] Read more.
The standard therapy strategy for high-grade glioma (HGG) is based on the maximal surgery followed by radio-chemotherapy (RT-CT) with insufficient control of the disease. Recurrences are mainly localized in the radiation field, suggesting an interest in radiotherapy dose escalation to better control the disease locally. We aimed to identify a similarity between the areas of high uptake on O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography/computed tomography (PET) before RT-CT, the residual tumor on post-therapy NADIR magnetic resonance imaging (MRI) and the area of recurrence on MRI. This is an ancillary study from the IMAGG prospective trial assessing the interest of FET PET imaging in RT target volume definition of HGG. We included patients with diagnoses of HGG obtained by biopsy or tumor resection. These patients underwent FET PET and brain MRIs, both after diagnosis and before RT-CT. The follow-up consisted of sequential brain MRIs performed every 3 months until recurrence. Tumor delineation on the initial MRI 1 (GTV 1), post-RT-CT NADIR MRI 2 (GTV 2), and progression MRI 3 (GTV 3) were performed semi-automatically and manually adjusted by a neuroradiologist specialist in neuro-oncology. GTV 2 and GTV 3 were then co-registered on FET PET data. Tumor volumes on FET PET (MTV) were delineated using a tumor to background ratio (TBR) ≥ 1.6 and different % SUVmax PET thresholds. Spatial similarity between different volumes was performed using the dice (DICE), Jaccard (JSC), and overlap fraction (OV) indices and compared together in the biopsy or partial surgery group (G1) and the total or subtotal surgery group (G2). Another overlap index (OV’) was calculated to determine the threshold with the highest probability of being included in the residual volume after RT-CT on MRI 2 and in MRI 3 (called “hotspot”). A total of 23 patients were included, of whom 22% (n = 5) did not have a NADIR MRI 2 due to a disease progression diagnosed on the first post-RT-CT MRI evaluation. Among the 18 patients who underwent a NADIR MRI 2, the average residual tumor was approximately 71.6% of the GTV 1. A total of 22% of patients (5/23) showed an increase in GTV 2 without diagnosis of true progression by the multidisciplinary team (MDT). Spatial similarity between MTV and GTV 2 and between MTV and GTV 3 were higher using a TBR ≥ 1.6 threshold. These indices were significantly better in the G1 group than the G2 group. In the FET hotspot analysis, the best similarity (good agreement) with GTV 2 was found in the G1 group using a 90% SUVmax delineation method and showed a trend of statistical difference with those (poor agreement) in the G2 group (OV’ = 0.67 vs. 0.38, respectively, p = 0.068); whereas the best similarity (good agreement) with GTV 3 was found in the G1 group using a 80% SUVmax delineation method and was significantly higher than those (poor agreement) in the G2 group (OV’= 0.72 vs. 0.35, respectively, p = 0.014). These results showed modest spatial similarity indices between MTV, GTV 2, and GTV 3 of HGG. Nevertheless, the results were significantly improved in patients who underwent only biopsy or partial surgery. TBR ≥ 1.6 and 80–90% SUVmax FET delineation methods showing a good agreement in the hotspot concept for targeting standard dose and radiation boost. These findings need to be tested in a larger randomized prospective study. Full article
(This article belongs to the Topic Novel Diagnostic and Therapeutic Strategies in Gliomas)
Show Figures

Figure 1

12 pages, 4991 KiB  
Article
Radiotherapy Target Volume Definition in Newly Diagnosed High-Grade Glioma Using 18F-FET PET Imaging and Multiparametric MRI: An Inter Observer Agreement Study
by Brieg Dissaux, Doria Mazouz Fatmi, Julien Ognard, Bastien Allard, Nathalie Keromnes, Amina Latreche, Amandine Lepeuve, Ulrike Schick, Vincent Bourbonne, Douraied Ben Salem, Gurvan Dissaux and Solène Querellou
Tomography 2022, 8(4), 2030-2041; https://doi.org/10.3390/tomography8040170 - 16 Aug 2022
Cited by 4 | Viewed by 2515
Abstract
Background: The aim of this prospective monocentric study was to assess the inter-observer agreement for tumor volume delineations by multiparametric MRI and 18-F-FET-PET/CT in newly diagnosed, untreated high-grade glioma (HGG) patients. Methods: Thirty patients HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine(18F-FET) positron emission tomography [...] Read more.
Background: The aim of this prospective monocentric study was to assess the inter-observer agreement for tumor volume delineations by multiparametric MRI and 18-F-FET-PET/CT in newly diagnosed, untreated high-grade glioma (HGG) patients. Methods: Thirty patients HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine(18F-FET) positron emission tomography (PET), and multiparametric MRI with computation of rCBV map and K2 map. Three nuclear physicians and three radiologists with different levels of experience delineated the 18-F-FET-PET/CT and 6 MRI sequences, respectively. Spatial similarity (Dice and Jaccard: DSC and JSC) and overlap (Overlap: OV) coefficients were calculated between the readers for each sequence. Results: DSC, JSC, and OV were high for 18F-FET PET/CT, T1-GD, and T2-FLAIR (>0.67). The Spearman correlation coefficient between readers was ≥0.6 for these sequences. Cross-comparison of similarity and overlap parameters showed significant differences for DSC and JSC between 18F-FET PET/CT and T2-FLAIR and for JSC between 18F-FET PET/CT and T1-GD with higher values for 18F-FET PET/CT. No significant difference was found between T1-GD and T2-FLAIR. rCBV, K2, b1000, and ADC showed correlation coefficients between readers <0.6. Conclusion: The interobserver agreements for tumor volume delineations were high for 18-F-FET-PET/CT, T1-GD, and T2-FLAIR. The DWI (b1000, ADC), rCBV, and K2-based sequences, as performed, did not seem sufficiently reproducible to be used in daily practice. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

12 pages, 1021 KiB  
Review
New Targets for PET Imaging of Myeloma
by Mona-Elisabeth Revheim, Caroline Stokke, Jakob Nordberg Nørgaard, Hilde Feiring Phillips, Alexander Gul Sherwani, Fredrik Schjesvold and James P. Connelly
Hemato 2021, 2(4), 727-738; https://doi.org/10.3390/hemato2040049 - 2 Dec 2021
Cited by 3 | Viewed by 6524
Abstract
Recent advances in the treatment of multiple myeloma (MM) have increased the need for accurate diagnosis and detection of minimal residual disease (MRD), disease characterization and localization, and response evaluation and prognostication. Positron emission tomography (PET)/computed tomography (CT) imaging combines molecular and morphological [...] Read more.
Recent advances in the treatment of multiple myeloma (MM) have increased the need for accurate diagnosis and detection of minimal residual disease (MRD), disease characterization and localization, and response evaluation and prognostication. Positron emission tomography (PET)/computed tomography (CT) imaging combines molecular and morphological information and has been shown to be especially valuable in this disease. The most frequently used PET tracer in MM is the glucose analog 18F-fluorodeoxyglucose ([18F]FDG). [18F]FDG PET/CT has a sensitivity for detection of MM between 80% to 100% and is currently the main imaging modality for assessing treatment response and for determining MRD. However, 18F-FDG PET/CT has some limitations, and imaging with alternative tracers that may overcome these constraints should be further explored. This article discusses new targets for PET/CT imaging in the assessment of MM. Full article
(This article belongs to the Special Issue Current and Upcoming Diagnostics and Prognostics in Multiple Myeloma)
Show Figures

Figure 1

16 pages, 1011 KiB  
Review
Diagnostic Performance and Prognostic Value of PET/CT with Different Tracers for Brain Tumors: A Systematic Review of Published Meta-Analyses
by Giorgio Treglia, Barbara Muoio, Gianluca Trevisi, Maria Vittoria Mattoli, Domenico Albano, Francesco Bertagna and Luca Giovanella
Int. J. Mol. Sci. 2019, 20(19), 4669; https://doi.org/10.3390/ijms20194669 - 20 Sep 2019
Cited by 83 | Viewed by 5562
Abstract
Background: Several meta-analyses reporting data on the diagnostic performance or prognostic value of positron emission tomography (PET) with different tracers in detecting brain tumors have been published so far. This review article was written to summarize the evidence-based data in these settings. Methods: [...] Read more.
Background: Several meta-analyses reporting data on the diagnostic performance or prognostic value of positron emission tomography (PET) with different tracers in detecting brain tumors have been published so far. This review article was written to summarize the evidence-based data in these settings. Methods: We have performed a comprehensive literature search of meta-analyses published in the Cochrane library and PubMed/Medline databases (from inception through July 2019) about the diagnostic performance or prognostic value of PET with different tracers in patients with brain tumors. Results: We have summarized the results of 24 retrieved meta-analyses on the use of PET or PET/computed tomography (CT) with different tracers in brain tumors. The tracers included were: fluorine-18 fluorodeoxyglucose (18F-FDG), carbon-11 methionine (11C-methionine), fluorine-18 fluoroethyltyrosine (18F-FET), fluorine-18 dihydroxyphenylalanine (18F-FDOPA), fluorine-18 fluorothymidine (18F-FLT), and carbon-11 choline (11C-choline). Evidence-based data demonstrated good diagnostic performance of PET with different tracers in detecting brain tumors, in particular, radiolabelled amino acid tracers showed the highest diagnostic performance values. All the PET tracers evaluated had significant prognostic value in patients with glioma. Conclusions: Evidence-based data showed a good diagnostic performance for some PET tracers in specific indications and significant prognostic value in brain tumors. Full article
(This article belongs to the Special Issue Cancer Molecular Imaging)
Show Figures

Figure 1

4 pages, 5653 KiB  
Communication
18F-FET-PET in Primary Hyperparathyroidism: A Pilot Study
by Martin Krakauer, Andreas Kjaer and Finn N. Bennedbæk
Diagnostics 2016, 6(3), 30; https://doi.org/10.3390/diagnostics6030030 - 17 Aug 2016
Cited by 10 | Viewed by 7092
Abstract
Preoperative localisation of the diseased parathyroid gland(s) in primary hyperparathyroidism (PHP) is a prerequisite for subsequent minimally invasive surgery. Recently, as alternatives to conventional sestamibi parathyroid scintigraphy, the 11C-based positron emission tomography (PET) tracers methionine and choline have shown promise for this [...] Read more.
Preoperative localisation of the diseased parathyroid gland(s) in primary hyperparathyroidism (PHP) is a prerequisite for subsequent minimally invasive surgery. Recently, as alternatives to conventional sestamibi parathyroid scintigraphy, the 11C-based positron emission tomography (PET) tracers methionine and choline have shown promise for this purpose. We evaluated the feasibility of using the 18F-based PET tracer fluoroethyl-l-tyrosine (FET), as the longer half-life of 18F makes it logistically more favourable. As a proof-of-concept study, we included two patients with PHP in which dual-isotope parathyroid subtraction single photon emission computed tomography had determined the exact location of the parathyroid adenoma. A dynamic FET PET/CT scan was performed with subsequent visual evaluation and calculation of target-to-background (TBR; parathyroid vs. thyroid). The maximum TBR in the two patients under study was achieved approximately 30 min after the injection of the tracer and was 1.5 and 1.7, respectively. This ratio was too small to allow for confident visualisation of the adenomas. FET PET/CT seems not feasible as a preoperative imaging modality in PHP. Full article
(This article belongs to the Collection Hybrid Imaging in Medicine)
Show Figures

Figure 1

Back to TopTop