Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 1,9-, 1,11-, and 1,15-PG lactones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5939 KiB  
Article
Peperomia campylotropa A.W. Hill: Ethnobotanical, Phytochemical, and Metabolomic Profile Related to Its Gastroprotective Activity
by Yazmín K. Márquez-Flores, Jesús Ayala-Velasco, José Correa-Basurto, Alan Estrada-Pérez and M. Estela Meléndez-Camargo
Molecules 2025, 30(4), 772; https://doi.org/10.3390/molecules30040772 - 7 Feb 2025
Viewed by 837
Abstract
Peperomia campylotropa (Piperaceae) is a species with a traditional Mexican gastroprotective use that has never-before been studied using metabolomics. This study explores the ethnobotanical use of the species, aiming to define the gastroprotective effect of the aqueous extract and characterize its secondary metabolites [...] Read more.
Peperomia campylotropa (Piperaceae) is a species with a traditional Mexican gastroprotective use that has never-before been studied using metabolomics. This study explores the ethnobotanical use of the species, aiming to define the gastroprotective effect of the aqueous extract and characterize its secondary metabolites by UHPLC–MS analysis. To validate its use, we botanically identified the species re-collected in the Municipality of Buenavista de Cuéllar, Guerrero, Mexico. We conducted interviews to provide evidence of the traditional details of its consumption and knowledge. Subsequently, qualitative phytochemical tests were performed to elucidate the possible secondary metabolites, which were also characterized under UHPLC–MS analysis and analyzed according to their primary type and retention times. Indomethacin (IND)- and ethanol (EtOH)-induced gastric damage models in Wistar rats were used for pharmacological evaluation, considering the ulceration index and gastroprotection percentage. Along with the participation in the mechanism of action of nitric oxide (NO), sulfhydryl (-SH) groups and prostaglandins (PG) were elucidated by Wistar rats pretreated with N(ω)-nitro-L-arginine methyl ester (L-NAME), N-Ethylmaleimide (NEM), and IND, respectively. Acute intragastric toxicity was also estimated in NIH female mice. Ninety people were interviewed, revealing the traditional knowledge of P. campylotropa as food and medicine for stomach diseases, including irritation and indigestion. The presence of phenolic compounds (48%), N-containing compounds (22%), glycosides (21%), terpenoids (7%), and lactones (4%) were verified by preliminary phytochemical analysis and by UHPLC–MS in which 162 secondary metabolites were characterized. Besides that, the aqueous extract at 62.5, 125, and 250 mg/kg of body weight (b.w.) decreased the ulcerative index, showing gastroprotection percentages between 60 and 80%, similar to that of omeprazole. Furthermore, -SH group participation in its activity was established. All this evidence supports the gastroprotective activity of P. campylotropa for the first time and contributes to understanding its secondary metabolite content. Full article
Show Figures

Graphical abstract

40 pages, 8623 KiB  
Review
Lactones in the Synthesis of Prostaglandins and Prostaglandin Analogs
by Constantin Tănase, Lucia Pintilie and Raluca Elena Tănase
Int. J. Mol. Sci. 2021, 22(4), 1572; https://doi.org/10.3390/ijms22041572 - 4 Feb 2021
Cited by 8 | Viewed by 7060
Abstract
In the total stereo-controlled synthesis of natural prostaglandins (PGs) and their structural analogs, a vast class of compounds and drugs, known as the lactones, are encountered in a few key steps to build the final molecule, as: δ-lactones, γ-lactones, and 1,9-, 1,11-, and [...] Read more.
In the total stereo-controlled synthesis of natural prostaglandins (PGs) and their structural analogs, a vast class of compounds and drugs, known as the lactones, are encountered in a few key steps to build the final molecule, as: δ-lactones, γ-lactones, and 1,9-, 1,11-, and 1,15-macrolactones. After the synthesis of 1,9-PGF and 1,15-PGF lactones, many 1,15-lactones of E2, E3, F2, F3, A2, and A3 were found in the marine mollusc Tethys fimbria and the quest for understanding their biological role stimulated the research on their synthesis. Then 1,9-, 1,11-, and 1,15-PG lactones of the drugs were synthesized as an alternative to the corresponding esters, and the first part of the paper describes the methods used for their synthesis. The efficient Corey procedure for the synthesis of prostaglandins uses the key δ-lactone and γ-lactone intermediates with three or four stereocenters on the cyclopentane fragment to link the PG side chains. The paper describes the most used procedures for the synthesis of the milestone δ-Corey-lactones and γ-Corey-lactones, their improvements, and some new promising methods, such as interesting, new stereo-controlled and catalyzed enantioselective reactions, and methods based on the chemical/enzymatic resolution of the compounds in different steps of the sequences. The many uses of δ-lactones not only for the synthesis of γ-lactones, but also for obtaining 9β-halogen-PGs and halogen-substituted cyclopentane intermediates, as synthons for new 9β-PG analogs and future applications, are also discussed. Full article
Show Figures

Figure 1

5 pages, 2614 KiB  
Proceeding Paper
A Molecular Docking of New 9β-Halogenated Prostaglandin Analogues
by Constantin I. Tanase, Lucia Pintilie and Elena Mihai
Proceedings 2019, 41(1), 21; https://doi.org/10.3390/ecsoc-23-06504 - 14 Nov 2019
Viewed by 1309
Abstract
Prostaglandins (PGs) with cytoprotective activity were studied for a long time, and a few PGE1 and PGE2 stable analogues were promoted as drugs: arbaprostil, enprostil, misoprostol, and rioptostol. Similarly, nocloprost, a 9β-chlorine prostaglandin analogue, and many 9β- and 11β-substituted prostaglandins were [...] Read more.
Prostaglandins (PGs) with cytoprotective activity were studied for a long time, and a few PGE1 and PGE2 stable analogues were promoted as drugs: arbaprostil, enprostil, misoprostol, and rioptostol. Similarly, nocloprost, a 9β-chlorine prostaglandin analogue, and many 9β- and 11β-substituted prostaglandins were synthesized and studied for their biological activity. We previously synthesized new 9β-halogenated prostaglandins with an ester group at the carbon atom 6 (PGs numbering) by the reaction of a δ-lactone intermediate with diols in acid catalysis. These compounds were used in the current molecular docking study to determine their potential cytoprotective (anti-ulcer) activity. The current study was done with the CLC Drug Discovery Workbench 2.4. software and an oxidoreductase enzyme receptor, chosen from the Protein Data Bank, ID: 4KEW (www.rcsb.org). We used two recognized drugs, omeprazole (co-crystallized with the enzyme) and nocloprost, as the standard. The 9β-halogenated prostaglandin analogs were docked. Nocloprost and all 9β-halogenated compounds had docking scores greater than that of omeprazole. The majority of the 9β-halogenated analogs had docking scores even greater than that of nocloprost, indicating that these compounds could have potential cytoprotective (anti-ulcer) activity. A few correlations between docking score and substituents on the prostaglandin skeleton were found. Full article
Show Figures

Figure 1

17 pages, 1310 KiB  
Article
Biotransformation of the Mycotoxin Enniatin B1 by CYP P450 3A4 and Potential for Drug-Drug Interactions
by Lada Ivanova, Ilia G. Denisov, Yelena V. Grinkova, Stephen G. Sligar and Christiane K. Fæste
Metabolites 2019, 9(8), 158; https://doi.org/10.3390/metabo9080158 - 27 Jul 2019
Cited by 14 | Viewed by 4722
Abstract
Enniatins (ENNs) are fungal secondary metabolites that frequently occur in grain in temperate climates. Their toxic potency is connected to their ionophoric character and lipophilicity. The biotransformation of ENNs predominantly takes place via cytochrome P450 3A (CYP 3A)-dependent oxidation reactions. Possible interaction with [...] Read more.
Enniatins (ENNs) are fungal secondary metabolites that frequently occur in grain in temperate climates. Their toxic potency is connected to their ionophoric character and lipophilicity. The biotransformation of ENNs predominantly takes place via cytochrome P450 3A (CYP 3A)-dependent oxidation reactions. Possible interaction with ENNs is relevant since CYP3A4 is the main metabolic enzyme for numerous drugs and contaminants. In the present study, we have determined the kinetic characteristics and inhibitory potential of ENNB1 in human liver microsomes (HLM) and CYP3A4-containing nanodiscs (ND). We showed in both in vitro systems that ENNB1 is mainly metabolised by CYP3A4, producing at least eleven metabolites. Moreover, ENNB1 significantly decreased the hydroxylation rates of the typical CYP3A4-substrate midazolam (MDZ). Deoxynivalenol (DON), which is the most prevalent mycotoxin in grain and usually co-occurrs with the ENNs, was not metabolised by CYP3A4 or binding to its active site. Nevertheless, DON affected the efficiency of this biotransformation pathway both in HLM and ND. The metabolite formation rates of ENNB1 and the frequently used drugs progesterone (PGS) and atorvastatin (ARVS) lactone were noticeably reduced, which indicated a certain affinity of DON to the enzyme with subsequent conformational changes. Our results emphasise the importance of drug–drug interaction studies, also with regard to natural toxins. Full article
(This article belongs to the Special Issue Fungal and Mycotoxin Metabolism)
Show Figures

Graphical abstract

14 pages, 473 KiB  
Article
N-Acyl Homoserine Lactones in Diverse Pectobacterium and Dickeya Plant Pathogens: Diversity, Abundance, and Involvement in Virulence
by Alexandre Crépin, Amélie Beury-Cirou, Corinne Barbey, Christine Farmer, Valérie Hélias, Jean-François Burini, Denis Faure and Xavier Latour
Sensors 2012, 12(3), 3484-3497; https://doi.org/10.3390/s120303484 - 12 Mar 2012
Cited by 44 | Viewed by 15388
Abstract
Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability [...] Read more.
Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability to infect the potato host plant. All the pathogens produced different NAHSLs, among which the 3-oxo-hexanoyl- and the 3-oxo-octanoyl-L-homoserine lactones represent at least 90% of total produced NAHSL-amounts. The level of NAHSLs varied from 0.6 to 2 pg/cfu. The involvement of NAHSLs in tuber maceration was investigated by electroporating a quorum quenching vector in each of the bacterial pathogen strains. All the NAHSL-lactonase expressing strains produced a lower amount of NAHSLs as compared to those harboring the empty vector. Moreover, all except Dickeya dadantii 3937 induced a lower level of symptoms in potato tuber assay. Noticeably, aggressiveness appeared to be independent of both nature and amount of produced signals. This work highlights that quorum sensing similarly contributed to virulence in most of the tested Pectobacterium and Dickeya, even the strains had been isolated recently or during the past decades. Thus, these key regulatory-molecules appear as credible targets for developing anti-virulence strategies against these plant pathogens. Full article
Show Figures

Graphical abstract

Back to TopTop