Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1972 KiB  
Article
Target-Guided Isolation of Progenitors of 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) from Riesling Wine by High-Performance Countercurrent Chromatography
by Recep Gök, Pia Selhorst, Mats Kiene, Theresa Noske, Michael Ziegler, Ulrich Fischer and Peter Winterhalter
Molecules 2022, 27(17), 5378; https://doi.org/10.3390/molecules27175378 - 23 Aug 2022
Cited by 3 | Viewed by 2331
Abstract
High-performance countercurrent chromatography (HPCCC) was used for the target-guided isolation of precursors of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) from Riesling wine. In separated HPCCC fractions of an Amberlite® XAD®-2 extract obtained from a German Riesling, TDN-generating fractions were identified by the acid-catalyzed hydrolysis [...] Read more.
High-performance countercurrent chromatography (HPCCC) was used for the target-guided isolation of precursors of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) from Riesling wine. In separated HPCCC fractions of an Amberlite® XAD®-2 extract obtained from a German Riesling, TDN-generating fractions were identified by the acid-catalyzed hydrolysis of the progenitors at pH 3.0 and subsequent HS-GC-MS/MS analysis. The presence of multiple TDN-generating precursors in Riesling wine could be confirmed. From polar HPCCC fractions (11–13 and 14–16), 3,4-dihydroxy-7,8-dihydro-β-ionone 3-O-rutinoside and 3,4-dihydroxy-7,8-dihydro-β-ionone 3-O-β-d-glucopyranoside were isolated as major TDN-precursors at a sufficient amount for structure elucidation by NMR spectroscopic studies. In the medium polar HPCCC factions (27–35), enzymatic hydrolysis liberated the aglycones 3-hydroxy-β-ionone and 3-hydroxy-TDN in minor amounts. In further less polar TDN-generation fractions (36–44 and 45–50), glycosidic progenitors were absent; instead, a minor TDN formation most likely from non-conjugated constituents was observed. Full article
Show Figures

Graphical abstract

16 pages, 3900 KiB  
Article
Effect of Cold Stabilization Duration on Organic Acids and Aroma Compounds during Vitis vinifera L. cv. Riesling Wine Bottle Storage
by Nongyu Xia, Haotian Cheng, Xuechen Yao, Qiuhong Pan, Nan Meng and Qingquan Yu
Foods 2022, 11(9), 1179; https://doi.org/10.3390/foods11091179 - 19 Apr 2022
Cited by 11 | Viewed by 3229
Abstract
During the storage of wines in bottles, especially white wines, tartrate crystallization often occurs, which reduces the commercial value of the wines and therefore needs to be avoided by performing cold stabilization treatments before bottling. However, whether different cold treatment durations impact the [...] Read more.
During the storage of wines in bottles, especially white wines, tartrate crystallization often occurs, which reduces the commercial value of the wines and therefore needs to be avoided by performing cold stabilization treatments before bottling. However, whether different cold treatment durations impact the quality of a wine’s aroma has not yet been of special concern. This research was conducted at an industrial scale to explore how cold treatments at −5.3 °C for 10 to 15 days impact the organic acids, aroma compounds, and sensory quality of Riesling dry white wines, and the variation was documented at the end of treatment, and at 6 and 12 months of bottle storage. The results showed that cold treatments significantly reduced tartaric acid concentrations and significantly affected the concentrations of most aroma components in the wines only after 12 months of bottle storage, including the main components of esters, norisoprenoids, terpenoids, and furfural. Moreover, the concentrations of some components showed an increasing trend with the bottle storage, especially 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), the characteristic volatile of Riesling wine, suggesting that an acidic condition resulting from cold treatment might facilitate the conversion of some aroma precursors into volatiles. In conclusion, cold stabilization treatments, within limits, can improve tartaric acid stability and could promote the conservation of aroma compounds during bottle storage without adversely affecting the aroma profile of the wines. Full article
(This article belongs to the Special Issue Advances in Wine Flavor Chemistry and Its Metabolic Mechanism)
Show Figures

Figure 1

12 pages, 1537 KiB  
Article
1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine
by Andrii Tarasov, Nicoló Giuliani, Alexey Dobrydnev, Christoph Schuessler, Yulian Volovenko, Doris Rauhut and Rainer Jung
Foods 2020, 9(5), 606; https://doi.org/10.3390/foods9050606 - 9 May 2020
Cited by 21 | Viewed by 7957
Abstract
1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is an aroma compound responsible for the kerosene/petrol notes in Riesling wines. In the current article, three sensory thresholds for TDN were determined in young Riesling wine: detection threshold (about 4 µg/L), recognition threshold (10–12 µg/L), and rejection threshold (71–82 µg/L). [...] Read more.
1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is an aroma compound responsible for the kerosene/petrol notes in Riesling wines. In the current article, three sensory thresholds for TDN were determined in young Riesling wine: detection threshold (about 4 µg/L), recognition threshold (10–12 µg/L), and rejection threshold (71–82 µg/L). It was demonstrated that an elevated content of free SO2 in wine may have a certain masking effect on the TDN aroma perception. In addition, the influence of wine serving temperature on the recognition of kerosene/petrol notes was studied. It was found, that a lower wine serving temperature (about 11 °C) facilitated identification of the TDN aroma compared to the same wine samples at room temperature. Full article
Show Figures

Graphical abstract

23 pages, 3375 KiB  
Article
Modulating Fermentative, Varietal and Aging Aromas of Wine Using non-Saccharomyces Yeasts in a Sequential Inoculation Approach
by Inês Oliveira and Vicente Ferreira
Microorganisms 2019, 7(6), 164; https://doi.org/10.3390/microorganisms7060164 - 6 Jun 2019
Cited by 41 | Viewed by 4829
Abstract
The goal of this study is to assess to what extent non-Saccharomyces yeasts can introduce aromatic changes of industrial interest in fermentative, varietal and aged aromas of wine. Aroma precursors from Riesling and Garnacha grapes were extracted and used in two independent [...] Read more.
The goal of this study is to assess to what extent non-Saccharomyces yeasts can introduce aromatic changes of industrial interest in fermentative, varietal and aged aromas of wine. Aroma precursors from Riesling and Garnacha grapes were extracted and used in two independent sequential experiments. Synthetic musts were inoculated, either with Saccharomyces cerevisiae (Sc) or with Pichia kluyveri (Pk), Torulaspora delbrueckii (Td) or Lachancea thermotolerans (Lt), followed by Sc. The fermented samples were subjected to anoxic aging at 50 °C for 0, 1, 2 or 5 weeks before an aroma analysis. The fermentative aroma profiles were consistently changed by non-Saccharomyces: all strains induced smaller levels of isoamyl alcohol; Pk produced huge levels of aromatic acetates and can induce high levels of fatty acids (FA) and their ethyl esters (EE); Td produced large levels of branched acids and of their EE after aging, and induced smaller levels of FA and their EE; Lt produced reduced levels of FA and their EE. The varietal aroma was also deeply affected: TDN (1,1,6-trimethyl-1,2- dihydronaphthalene) levels in aged wines were reduced by Pk and enhanced by Lt in Garnacha; the levels of vinylphenols can be much reduced, particularly by Lt and Pk. TD and Lt can increase linalool and geraniol in young, but not in aged wines. Full article
(This article belongs to the Special Issue Non-conventional Yeasts: Genomics and Biotechnology)
Show Figures

Graphical abstract

Back to TopTop