Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = “intermediate” liposome formulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5759 KB  
Article
Mechanisms of Self-Assembly of Giant Unilamellar Vesicles in the Army Liposome Formulation (ALF) Family of Vaccine Adjuvants
by Calin Nicolescu, Essie Komla, Mangala Rao, Gary R. Matyas and Carl R. Alving
Pharmaceutics 2025, 17(9), 1092; https://doi.org/10.3390/pharmaceutics17091092 - 22 Aug 2025
Viewed by 823
Abstract
Background/Objectives: Army Liposome Formulation with QS21 (ALFQ) is a vaccine adjuvant formulation consisting of liposomes that contain saturated zwitterionic and anionic phospholipids, 55 mol% cholesterol, and small molar amounts of monophosphoryl lipid A (MPLA) and QS21 saponin as adjuvants. A unique aspect of [...] Read more.
Background/Objectives: Army Liposome Formulation with QS21 (ALFQ) is a vaccine adjuvant formulation consisting of liposomes that contain saturated zwitterionic and anionic phospholipids, 55 mol% cholesterol, and small molar amounts of monophosphoryl lipid A (MPLA) and QS21 saponin as adjuvants. A unique aspect of ALFQ is that after addition of QS21 to nanoliposomes (<100 nm), the liposomes self-assemble through fusion to form giant (≥1000 nm) unilamellar vesicles (GUVs). The purpose of this study was to introduce and investigate new intermediate structures in the fusion process that we term tethered incomplete microspheres (TIMs), which were discovered by us incidentally as structures that were visible by phase contrast microscopy. Methods: Differential centrifugation; phase contrast microscopy; confocal microscopy of vesicles or TIMs which contain fluorescent chromophores linked to phospholipids or cholesterol; ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis of lipid components of liposomes and TIMs; and dynamic light scattering were all used for the characterization of TIMS. Results and Conclusions: (A) Sizes of TIMs range from overall aggregated structural sizes of ~1 µm to mega sizes of ≥200 µm. (B) Stable TIM structures occur when a fusion process is stopped by depletion of a fusogenic lipid during an evolving fusing of a lipid bilayer membrane. (C) TIMs consist of long-term stable (>2 years), but also metastable, tightly aggregated tear-drop or spherical incomplete GUVs tethered to visible masses of underlying vesicles that are not individually visible. (D) The TIMs and GUVs all contain phospholipid and cholesterol (when present) as bulk lipids. (E) Lyophilized liposomes lacking QS21 saponin, but which still contain MPLA (ALF55lyo), also self-assemble to form GUVs and TIMs. (F) Cholesterol is a required component in nanoliposomes for generation of GUVs and TIMs by addition of QS21. (G) Cholesterol is not required for production of GUVs and TIMs in ALFlyo, but cholesterol greatly reduces and narrows the polydisperse vesicle distribution. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 2112 KB  
Article
New Metallophthalocyanines Bearing 2-Methylimidazole Moieties—Potential Photosensitizers against Staphylococcus aureus
by Marcin Wierzchowski, Daniel Ziental, Dawid Łażewski, Artur Korzanski, Agnieszka Gielara-Korzanska, Ewa Tykarska, Jolanta Dlugaszewska and Lukasz Sobotta
Int. J. Mol. Sci. 2022, 23(11), 5910; https://doi.org/10.3390/ijms23115910 - 25 May 2022
Cited by 8 | Viewed by 2225
Abstract
Newly developed tetra- and octasubstituted methimazole-phthalocyanine conjugates as potential photosensitizers have been obtained. Synthesized intermediates and final products were characterized by the MALD-TOF technique and various NMR techniques, including 2D methods. Single-crystal X-ray diffraction was used to determine the crystal structures of dinitriles. [...] Read more.
Newly developed tetra- and octasubstituted methimazole-phthalocyanine conjugates as potential photosensitizers have been obtained. Synthesized intermediates and final products were characterized by the MALD-TOF technique and various NMR techniques, including 2D methods. Single-crystal X-ray diffraction was used to determine the crystal structures of dinitriles. The studied phthalocyanines revealed two typical absorption bands—the Soret band and the Q band. The most intense fluorescence was observed for octasubstituted magnesium(II) phthalocyanine in DMF (ΦFL = 0.022). The best singlet oxygen generators were octasubstituted magnesium(II) and zinc(II) phthalocyanines (Φ 0.56 and 0.81, respectively). The studied compounds presented quantum yields of photodegradation at the level between 10−5 and 10−6. Due to their low solubility in a water environment, the liposomal formulations were prepared. Within the studied group, octasubstituted zinc(II) phthalocyanine at the concentration of 100 µM activated with red light showed the highest antibacterial activity against S. aureus equal to a 5.68 log reduction of bacterial growth. Full article
(This article belongs to the Special Issue Novel Metal Coordination Complexes for Biomedical Applications)
Show Figures

Figure 1

28 pages, 5204 KB  
Article
An Updated Risk Assessment as Part of the QbD-Based Liposome Design and Development
by Zsófia Németh, Edina Pallagi, Dorina Gabriella Dobó, Gábor Kozma, Zoltán Kónya and Ildikó Csóka
Pharmaceutics 2021, 13(7), 1071; https://doi.org/10.3390/pharmaceutics13071071 - 13 Jul 2021
Cited by 27 | Viewed by 3843
Abstract
Liposomal formulation development is a challenging process. Certain factors have a critical influence on the characteristics of the liposomes, and even the relevant properties can vary based on the predefined interests of the research. In this paper, a Quality by Design-guided and Risk [...] Read more.
Liposomal formulation development is a challenging process. Certain factors have a critical influence on the characteristics of the liposomes, and even the relevant properties can vary based on the predefined interests of the research. In this paper, a Quality by Design-guided and Risk Assessment (RA)-based study was performed to determine the Critical Material Attributes and the Critical Process Parameters of an “intermediate” active pharmaceutical ingredient-free liposome formulation prepared via the thin-film hydration method, collect the Critical Quality Attributes of the future carrier system and show the process of narrowing a general initial RA for a specific case. The theoretical liposome design was proved through experimental models. The investigated critical factors covered the working temperature, the ratio between the wall-forming agents (phosphatidylcholine and cholesterol), the PEGylated phospholipid content (DPPE-PEG2000), the type of the hydration media (saline or phosphate-buffered saline solutions) and the cryoprotectants (glucose, sorbitol or trehalose). The characterisation results (size, surface charge, thermodynamic behaviours, formed structure and bonds) of the prepared liposomes supported the outcomes of the updated RA. The findings can be used as a basis for a particular study with specified circumstances. Full article
(This article belongs to the Special Issue Advances in Micro/Nanotechnology in Drug Delivery)
Show Figures

Figure 1

16 pages, 2033 KB  
Article
Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo
by Helena C. Besse, Angelique D. Barten-van Rijbroek, Kim M.G. van der Wurff-Jacobs, Clemens Bos, Chrit T.W. Moonen and Roel Deckers
Cancers 2019, 11(10), 1512; https://doi.org/10.3390/cancers11101512 - 9 Oct 2019
Cited by 34 | Viewed by 5172
Abstract
Tumor drug distribution and concentration are important factors for effective tumor treatment. A promising method to enhance the distribution and the concentration of the drug in the tumor is to encapsulate the drug in a temperature sensitive liposome. The aim of this study [...] Read more.
Tumor drug distribution and concentration are important factors for effective tumor treatment. A promising method to enhance the distribution and the concentration of the drug in the tumor is to encapsulate the drug in a temperature sensitive liposome. The aim of this study was to investigate the tumor drug distribution after treatment with various injected doses of different liposomal formulations of doxorubicin, ThermoDox (temperature sensitive liposomes) and DOXIL (non-temperature sensitive liposomes), and free doxorubicin at macroscopic and microscopic levels. Only ThermoDox treatment was combined with hyperthermia. Experiments were performed in mice bearing a human fibrosarcoma. At low and intermediate doses, the largest growth delay was obtained with ThermoDox, and at the largest dose, the largest growth delay was obtained with DOXIL. On histology, tumor areas with increased doxorubicin concentration correlated with decreased cell proliferation, and substantial variations in doxorubicin heterogeneity were observed. ThermoDox treatment resulted in higher tissue drug levels than DOXIL and free doxorubicin for the same dose. A relation with the distance to the vasculature was shown, but vessel perfusion was not always sufficient to determine doxorubicin delivery. Our results indicate that tumor drug distribution is an important factor for effective tumor treatment and that its dependence on delivery formulation merits further systemic investigation. Full article
(This article belongs to the Special Issue Hyperthermia-based Anticancer Treatments)
Show Figures

Figure 1

Back to TopTop