Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ε-N fatigue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6874 KiB  
Article
A Modified Fatigue Life Prediction Model for Cyclic Hardening/Softening Steel
by Zhibin Shen, Zhihui Cai, Hong Wang, Bo Xu, Linye Zhang, Yuxuan Song and Zengliang Gao
Materials 2025, 18(14), 3274; https://doi.org/10.3390/ma18143274 - 11 Jul 2025
Viewed by 333
Abstract
The accumulation of fatigue damage is primarily caused by cyclic plastic deformation. In low-cycle fatigue, cyclic plastic deformation is the dominant deformation mode. In high-cycle fatigue, although most deformation is elastic, plastic deformation may still occur in localized regions of stress concentration and [...] Read more.
The accumulation of fatigue damage is primarily caused by cyclic plastic deformation. In low-cycle fatigue, cyclic plastic deformation is the dominant deformation mode. In high-cycle fatigue, although most deformation is elastic, plastic deformation may still occur in localized regions of stress concentration and plays a critical role in the initiation of fatigue cracks. Considering that cyclic plastic deformation can be characterized by hysteresis loops, this study modifies the flow stress equation and the cyclic plastic deformation relationship based on stress–strain hysteresis loops at half-life cycles under different strain amplitudes. An improved model for life prediction that incorporates the effects of strain amplitude is proposed. The results of experiments on 310S stainless steel and 1045 carbon steel demonstrate that the model achieved prediction errors within a factor of two and provided reliable predictions for both high-cycle and low-cycle fatigue life across the entire ε-N curve. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 12663 KiB  
Article
Fatigue Cracking Characteristics of Ultra-Large Particle Size Asphalt Mixture Under Temperature and Loading Using Digital Image Correlation Techniques
by Tian Tian, Yingjun Jiang, Yong Yi, Chenliang Nie and Changqing Deng
Materials 2025, 18(7), 1475; https://doi.org/10.3390/ma18071475 - 26 Mar 2025
Viewed by 539
Abstract
This study quantitatively investigates the fatigue cracking behavior of ultra-large particle size asphalt mixture (LSAM-50) under coupled temperature and stress effects. Fatigue tests were conducted across temperatures ranging from −15 °C to 35 °C and stress levels (0.3–0.9 of splitting tensile strength), with [...] Read more.
This study quantitatively investigates the fatigue cracking behavior of ultra-large particle size asphalt mixture (LSAM-50) under coupled temperature and stress effects. Fatigue tests were conducted across temperatures ranging from −15 °C to 35 °C and stress levels (0.3–0.9 of splitting tensile strength), with crack evolution tracked in real time using digital image correlation (DIC). Key parameters, including main crack length, crack density, curvature, fractal dimension, and strain, were analyzed to characterize crack propagation. Results revealed a three-stage process: initiation, development, and acceleration to failure. Increasing temperature or stress level accelerated horizontal/vertical displacement rates, main crack expansion, and strain accumulation, while reducing crack density and fractal dimension. A fatigue prediction model, LgN = 9.741 − 1.213Lgε − 0.017T − 1.579S (R2 = 0.954), was established, linking fatigue life (N) to strain (ε), temperature (T), and stress level (S). This model enables precise fatigue life estimation under varying environmental conditions. For instance, the model predicts a 60% reduction in fatigue life when temperature rises from 15 °C to 35 °C at S = 0.7, highlighting its utility in material selection for climate-resilient infrastructure, offering a critical tool for optimizing LSAM-50 in pavement design. By integrating DIC-derived crack metrics and mechanistic insights, this work not only enhances understanding of the fatigue cracking behavior of LSAM-50 but also provides valuable insights for the design and optimization of materials under varying environmental conditions. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

15 pages, 5902 KiB  
Article
In Situ Crosslinked Biodegradable Hydrogels Based on Poly(Ethylene Glycol) and Poly(ε-Lysine) for Medical Application
by Xia Ding, Bing Yang and Zhaosheng Hou
Molecules 2024, 29(22), 5435; https://doi.org/10.3390/molecules29225435 - 18 Nov 2024
Cited by 2 | Viewed by 1393
Abstract
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene [...] Read more.
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene glycol) (4–arm–PEG–Mal) and poly(ε-lysine) (ε–PL). The PEG/ε–PL hydrogels, named LG–n, were rapidly formed via amine/maleimide reaction by mixing 4–arm–PEG–Mal and ε–PL under physiological conditions. The corresponding dry gels (DLG–n) were obtained through a freeze-drying technique. 1H NMR, FT–IR, and SEM were utilized to confirm the structures of 4–arm–PEG–Mal and LG–n (or DLG–n), and the effects of solid content on the physicochemical properties of the hydrogels were investigated. Although high solid content could increase the swelling ratio, all LG–n samples exhibited a low equilibrium swelling ratio of less than 30%. LG–7, which contained moderate solid content, exhibited optimal compression properties characterized by a compressive fracture strength of 45.2 kPa and a deformation of 69.5%. Compression cycle tests revealed that LG–n demonstrated good anti-fatigue performance. In vitro degradation studies confirmed the biodegradability of LG–n, with the degradation rate primarily governing the drug (ceftibuten) release efficiency, leading to a sustained release duration of four weeks. Cytotoxicity tests, cell survival morphology observation, live/dead assays, and hemolysis tests indicated that LG–n exhibited excellent cytocompatibility and low hemolysis rates (<5%). Furthermore, the broad-spectrum antibacterial activity of LG–n was verified by an inhibition zone method. In conclusion, the developed LG–n hydrogels hold promising applications in the medical field, particularly as drug sustained-release carriers and wound dressings. Full article
(This article belongs to the Special Issue Hydrogels: Preparation, Characterization, and Applications)
Show Figures

Graphical abstract

20 pages, 8697 KiB  
Review
A Comprehensive Review of Fatigue Strength in Pure Copper Metals (DHP, OF, ETP)
by Eduardo Jiménez-Ruiz, Rubén Lostado-Lorza and Carlos Berlanga-Labari
Metals 2024, 14(4), 464; https://doi.org/10.3390/met14040464 - 15 Apr 2024
Cited by 4 | Viewed by 7299
Abstract
Due to their exceptional electrical and thermal conductivity properties, high-purity copper (Cu-DHP) and copper alloys of similar composition, such as electrolytic tough-pitch (ETP), oxygen-free electronic (OFE) and oxygen-free (OF), have often been used in the manufacture of essential components for the electrical, electronic [...] Read more.
Due to their exceptional electrical and thermal conductivity properties, high-purity copper (Cu-DHP) and copper alloys of similar composition, such as electrolytic tough-pitch (ETP), oxygen-free electronic (OFE) and oxygen-free (OF), have often been used in the manufacture of essential components for the electrical, electronic and power generation industries. Since these components are subject to cyclic loads in service, they can suffer progressive structural damage that causes failure due to fatigue. The purpose of this review is to examine the most relevant aspects of mechanical fatigue in Cu-DHP, ETP, OFE and OF. The impact of many factors on fatigue strength (Se), including the frequency, temperature, chemical environment, grain size, metallurgical condition and load type, were analyzed and discussed. Stress–life (S-N) curves under zero mean stress (σm = 0) were found for high-cycle fatigue (HCF). For non-zero mean stress (σm ≠ 0), stress curves were based on a combination of Gerber, Soderberg and ASME elliptic failure criteria. Stress–life (S-N) curves were also developed to correlate fatigue strength (Se) with stress amplitude (σa), yield strength (Syp) and ultimate strength (Sut). Finally, for low-cycle fatigue (LCF), strain–life (ε-N) curves that establish a relationship between the number of cycles to failure (N) and total strain amplitude (εplastic) were determined. Hence, this review, as well as the proposed curves, provide valuable information to understand fatigue failure for these types of materials. Full article
(This article belongs to the Special Issue Fatigue Behavior in Metallic Materials)
Show Figures

Figure 1

18 pages, 10358 KiB  
Article
Strain-Based Fatigue Experimental Study on Ti–6Al–4V Alloy Manufactured by Electron Beam Melting
by Alberto David Pertuz-Comas, Octavio Andrés González-Estrada, Elkin Martínez-Díaz, Diego Fernando Villegas-Bermúdez and Jorge Guillermo Díaz-Rodríguez
J. Manuf. Mater. Process. 2023, 7(1), 25; https://doi.org/10.3390/jmmp7010025 - 18 Jan 2023
Cited by 10 | Viewed by 2898
Abstract
Additive manufacturing (AM) by electron beam melting (EBM) is a technique used to manufacture parts by melting powder metal layer-by-layer with an electron beam in a high vacuum, thereby generating a 3D topology. This paper studies the low-cycle fatigue of Ti–6Al–4V specimens obtained [...] Read more.
Additive manufacturing (AM) by electron beam melting (EBM) is a technique used to manufacture parts by melting powder metal layer-by-layer with an electron beam in a high vacuum, thereby generating a 3D topology. This paper studies the low-cycle fatigue of Ti–6Al–4V specimens obtained by EBM. Static tests were carried out according to ASTM E8 for a yield stress of 1023 MPa, a fracture stress of 1102 MPa, and a maximum tensile strength of 1130 MPa with a maximum true normal strain at fracture εmax = 9.0% and an elastic modulus of 120 GPa. Then, fatigue tests were conducted at a load inversion rate of R = −1. It was observed that the material exhibited plastic strain softening, which was attributed to the Bauschinger effect. These results were plotted on a strain vs. life (ε−N) curve using the Ong version of the Coffin–Manson rule and the Baumel–Seager and Meggiolaro–Castro rules. The results were compared to forged Ti–6Al–4V alloys. The cyclic stress–strain behavior was described with the Ramberg–Osgood model. Finally, the fracture surface was analyzed using scanning electron microscopy (SEM) to observe the formation of primary cracks. The fracture morphology showed a mixed surface, also known as a “quasi-cleavage”, which is characterized by dimples, cleavage facets, extensive primary cracks with broken slipping planes, and a large number of inclusions. This phenomenon caused a possible brittle behavior in the material. Full article
(This article belongs to the Special Issue Advances in Metal Additive Manufacturing/3D Printing)
Show Figures

Figure 1

24 pages, 10419 KiB  
Article
Estimate of Coffin–Manson Curve Shift for the Porous Alloy AlSi9Cu3 Based on Numerical Simulations of a Porous Material Carried Out by Using the Taguchi Array
by Dejan Tomažinčič and Jernej Klemenc
Materials 2022, 15(6), 2269; https://doi.org/10.3390/ma15062269 - 18 Mar 2022
Cited by 3 | Viewed by 2674
Abstract
In real engineering applications, machine parts are rarely completely homogeneous; in most cases, there are at least some minor notch effects or even more extensive inhomogeneities, which cause critical local stress concentrations from which fatigue fractures develop. In the present research, a shift [...] Read more.
In real engineering applications, machine parts are rarely completely homogeneous; in most cases, there are at least some minor notch effects or even more extensive inhomogeneities, which cause critical local stress concentrations from which fatigue fractures develop. In the present research, a shift of the Coffin–Manson εaN material curve in a structure with random porosity subjected to dynamic LCF loads was studied. This allows the rest of the fatigue life prediction process to remain the same as if it were a homogeneous material. Apart from the cyclic σε curve, which is relatively easy to obtain experimentally, the εaN curve is the second most important curve to describe the correlation between the fatigue life N and the strain level εa. Therefore, the correct shift of the εaN curve of the homogeneous material to a position corresponding to the porous state of the material is crucial. We have found that the curve shift can be efficiently performed on the basis of numerical simulations of a combination of five porosity-specific geometric influences and the associated regression analysis. To model the modified synthetic εaN curve, five geometric influences of porosity by X-ray or μ-CT analysis are quantified, and then the porosity-adjusted coefficients of the Coffin–Manson equation are calculated. The proposed approach has been successfully applied to standard specimens with different porosity topography. Full article
(This article belongs to the Special Issue New Advances in Characterization of Cellular Materials)
Show Figures

Graphical abstract

11 pages, 5402 KiB  
Article
Microstructure and Fracture Toughness of Nitrided D2 Steels Using Potential-Controlled Nitriding
by Ki-Hong Kim, Won-Beom Lee, Tae-Hwan Kim and Seok-Won Son
Metals 2022, 12(1), 139; https://doi.org/10.3390/met12010139 - 11 Jan 2022
Cited by 8 | Viewed by 5009
Abstract
Potential-controlled nitriding is an effective technique for enhancing the life of steel molds and dies by improving their surface hardness and toughness against fatigue damage. In this study, the effect of the nitriding potential on the microstructure and fracture toughness of nitrided AISI [...] Read more.
Potential-controlled nitriding is an effective technique for enhancing the life of steel molds and dies by improving their surface hardness and toughness against fatigue damage. In this study, the effect of the nitriding potential on the microstructure and fracture toughness of nitrided AISI D2 steels was investigated. The nitrided layers were characterized by microhardness measurements, optical microscopy, and scanning electron microscopy, and their phases were identified by X-ray and electron backscatter diffraction. As the nitriding potential increased to 2.0 atm−1/2, an increase in the surface hardness and fracture toughness was observed with the growth of the compound layer. However, both the surface hardness and the fracture toughness decreased at the higher nitriding potential of 5.0 atm−1/2 owing to the increased porosity in the compound layers, which mainly consist of the ε (Fe2–3N) phase. Additionally, by observing crack growth behavior, the fracture toughness was analyzed considering the material characteristics of the diffusion and compound layers. The fracture toughness was influenced by the location of the initial Palmqvist cracks due to the localized plastic deformation of the diffusion layer and increased crack length due to the porous compound layer. Full article
Show Figures

Figure 1

16 pages, 17160 KiB  
Article
Numerical and Experimental Assessment of the Effect of Residual Stresses on the Fatigue Strength of an Aircraft Blade
by Arkadiusz Bednarz and Wojciech Zbigniew Misiolek
Materials 2021, 14(18), 5279; https://doi.org/10.3390/ma14185279 - 14 Sep 2021
Cited by 5 | Viewed by 2325
Abstract
The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment-shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the [...] Read more.
The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment-shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the values of the residual stresses on both sides of the blade and their reduction due to cutting through the blade-relaxation. The obtained values of the residual stresses were used as initial stresses in the numerical fatigue analysis of the damaged compressor blade, which was subjected to resonant vibrations of known amplitude. Numerical fatigue ε-N life analysis was based on several fatigue material models: Manson’s, Mitchell’s, Baumel-Seeger’s, Muralidharan-Manson’s, Ong’s, Roessle-Fatemi’s, and Median’s, and also on the three models of cyclic hardening: Manson’s, Xianxin’s, and Fatemi’s. Because of this approach, it was possible to determine the relationship between the selection of the fatigue material ε-N model and the cyclic hardening model on the results of the numerical fatigue analysis. Additionally, the calculated results were compared with the results of experimental research, which allowed for a substantive evaluation of the obtained results. These results are of great scientific and practical importance. The problem of determining the fatigue life of blades with defects operating under resonance vibrations is one of the original tasks in the field of fracture mechanics and experimental mechanics. The results obtained are of great importance in the aviation industry and can be used during engine maintenance and inspections to assess the suitability of blades with defects in terms of the needs of further work. This aspect of engineering maintenance is of great importance from the aircraft safety point of view. Full article
Show Figures

Figure 1

16 pages, 3727 KiB  
Article
A Method for Comparing the Fatigue Performance of Forged AZ80 Magnesium
by Andrew Gryguć, Seyed Behzad Behravesh, Hamid Jahed, Mary Wells, Bruce Williams, Rudy Gruber, Alex Duquette, Tom Sparrow, Jim Prsa and Xuming Su
Metals 2021, 11(8), 1290; https://doi.org/10.3390/met11081290 - 16 Aug 2021
Cited by 13 | Viewed by 2917
Abstract
A closed die forging process was developed to successfully forge an automotive suspension component from AZ80 Mg at a variety of different forging temperatures (300 °C, 450 °C). The properties of the forged component were compared and contrasted with other research works on [...] Read more.
A closed die forging process was developed to successfully forge an automotive suspension component from AZ80 Mg at a variety of different forging temperatures (300 °C, 450 °C). The properties of the forged component were compared and contrasted with other research works on forged AZ80 Mg at both an intermediate forging and full-scale component forging level. The monotonic response, as well as the stress and strain-controlled fatigue behaviours, were characterized for the forged materials. Stress, strain and energy-based fatigue data were used as a basis for comparison of the durability performance. The effects of the starting material, forging temperature, forging geometry/configuration were all studied and aided in developing a deeper understanding of the process-structure-properties relationship. In general, there is a larger improvement in the material properties due to forging with cast base material as the microstructural modification which enhances both the strength and ductility is more pronounced. In general, the optimum fatigue properties were achieved by using extruded base-material and forging using a closed-die process at higher strain rates and lower temperatures. The merits and drawbacks of various fatigue damage parameters (FDP’s) were investigated for predicting the fatigue behaviour of die-forged AZ80 Mg components, of those investigated, strain energy density (SED) proved to be the most robust method of comparison. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Mg Alloys)
Show Figures

Figure 1

18 pages, 14107 KiB  
Article
Research on the Properties and Low Cycle Fatigue of Sc-Modified AA2519-T62 FSW Joint
by Robert Kosturek, Lucjan Śnieżek, Janusz Torzewski, Tomasz Ślęzak, Marcin Wachowski and Ireneusz Szachogłuchowicz
Materials 2020, 13(22), 5226; https://doi.org/10.3390/ma13225226 - 19 Nov 2020
Cited by 11 | Viewed by 2165
Abstract
The aim of this research was to examine the mechanical and fatigue properties of friction stir welded Sc-modified 5 mm thick AA2519-T62 extrusion. The joint was obtained using the following parameters: 800 rpm tool rotation speed, 100 mm/min tool traverse speed, 17 kN [...] Read more.
The aim of this research was to examine the mechanical and fatigue properties of friction stir welded Sc-modified 5 mm thick AA2519-T62 extrusion. The joint was obtained using the following parameters: 800 rpm tool rotation speed, 100 mm/min tool traverse speed, 17 kN axial, and MX Triflute as a tool. The investigation has involved microstructure observations, microhardness distribution analysis, tensile test with digital image correlation technique, observations of the fracture surface, measurements of residual stresses, low cycle fatigue testing, and fractography. It was stated that the obtained weld is defect-free and has joint efficiency of 83%. The failure in the tensile test occurred at the boundary of the thermo-mechanically affected zone and stir zone on the advancing side of the weld. The residual stress measurements have revealed that the highest values of longitudinal stress are localized at the distance of 10 mm from the joint line with their values of 124 MPa (the retreating side) and 159 MPa (the advancing side). The results of low cycle fatigue testing have allowed establishing of the values of the cyclic strength coefficient (k′ = 504.37 MPa) and cyclic strain hardening exponent (n′ = 0.0068) as well as the factors of the Manson–Coffin–Basquin equation: the fatigue strength coefficient σ′f = 462.4 MPa, the fatigue strength exponent b = −0.066, the fatigue ductility coefficient ε′f = 0.4212, and the fatigue ductility exponent c = −0.911. Full article
Show Figures

Figure 1

13 pages, 3510 KiB  
Article
The Effect of the Transformation of ε-Fe2-3N into γ′-Fe4N Phase on the Fatigue Strength of Gas-Nitrided Pure Iron
by Sunkwang Kim, Sungook Yoon, Jun-Ho Kim and Soon Park
Metals 2020, 10(6), 823; https://doi.org/10.3390/met10060823 - 19 Jun 2020
Cited by 16 | Viewed by 4237
Abstract
The effect of the iron nitride phases, ε-Fe2-3N and γ′-Fe4N, on the fatigue strength was investigated. Pure iron was used to observe only the effect of nitride, excluding the effects of factors, such as residual stress, depending on the [...] Read more.
The effect of the iron nitride phases, ε-Fe2-3N and γ′-Fe4N, on the fatigue strength was investigated. Pure iron was used to observe only the effect of nitride, excluding the effects of factors, such as residual stress, depending on the alloy composition and microstructural change according to working on the fatigue strength. In this work, ε and γ′ phases were respectively grown at a time on the surface of the pure iron specimens using the appropriate nitriding potential KN, the mixture rates of ammonia and hydrogen gases, at same temperature of 570 °C according to the Fe-N Lehrer diagram. Another γ′ phase was prepared by first growing the ε phase and then transformed from ε phase into γ′ phase by changing the KN at the same temperature of 570 °C in the 2-stage gas nitriding. The fatigue strengths of the iron nitride consisted of ε and γ′ phases, γ′ phase, and γ′ phase grown by the 2-stage gas nitriding were evaluated, respectively. As a result, first, it can be seen that the diffusion layer of ε phase was deeper than γ′ phase, but fatigue strength was lower. On the other hand, fatigue strength of both the γ′ phases are higher than that of the ε, and the fatigue strength of γ′ phase nitride grown by 2-stage gas nitriding was almost similar to that of γ′ phase nitride grown at a time, i.e., fatigue strength was not significantly related to diffusion depth and depended on nitride phases in this study. Secondly, we cannot clearly conclude that there was the difference in fatigue strength according to the thickness of nitride layer consisted of γ′ phase. However, it is clear that when ε phase was transformed to γ′ phase, fatigue strength had the same level as γ′ phase formed at one time. Full article
Show Figures

Figure 1

12 pages, 5191 KiB  
Article
Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion
by Robert Kosturek, Lucjan Śnieżek, Janusz Torzewski and Marcin Wachowski
Materials 2020, 13(1), 220; https://doi.org/10.3390/ma13010220 - 4 Jan 2020
Cited by 23 | Viewed by 3201
Abstract
This investigation presents the results of research on low cycle fatigue properties of Sc-modified AA2519-T62 extrusion. The basic mechanical properties of the investigated alloy have been established in the tensile test. The low cycle fatigue testing has been performed on five different levels [...] Read more.
This investigation presents the results of research on low cycle fatigue properties of Sc-modified AA2519-T62 extrusion. The basic mechanical properties of the investigated alloy have been established in the tensile test. The low cycle fatigue testing has been performed on five different levels of total strain amplitude: 0.4%; 0.5%; 0.6%; 0.7% and 0.8% with cycle asymmetry coefficient R = 0.1. For each level of total strain amplitude, the graphs of variations in stress amplitude and plastic strain amplitude in the number of cycles have been presented. The obtained results allowed to establish Ramberg-Osgood and Manson-Coffin-Basquin relationships. The established values of the cyclic strength coefficient and cyclic strain hardening exponent equal to k’ = 1518.1 MPa and n’ = 0.1702. Based on the Manscon-Coffin-Basquin equation, the values of the following parameters have been established: the fatigue strength coefficient σ’f = 1489.8 MPa, the fatigue strength exponent b = −0.157, the fatigue ductility coefficient ε’f = 0.4931 and the fatigue ductility exponent c = −1.01. The fatigue surfaces of samples tested on 0.4%, 0.6% and 0.8% of total strain amplitude have been subjected to scanning electron microscopy observations. The scanning electron microscopy observations of the fatigue surfaces revealed the presence of cracks in striations in the surrounding area with a high concentration of precipitates. It has been observed that larger Al2Cu precipitates exhibit a higher tendency to fracture than smaller precipitates having a higher concentration of scandium and zirconium. Full article
Show Figures

Figure 1

13 pages, 9063 KiB  
Article
The Effect of Plasma Nitriding on the Fatigue Behavior of the Ti-6Al-4V Alloy
by Michele C. B. de Castro, Antônio A. Couto, Gisele F. C. Almeida, Marcos Massi, Nelson B. de Lima, Argemiro da Silva Sobrinho, Mariano Castagnet, Gleicy L. Xavier and Rene R. Oliveira
Materials 2019, 12(3), 520; https://doi.org/10.3390/ma12030520 - 9 Feb 2019
Cited by 19 | Viewed by 4572
Abstract
The Ti-6Al-4V alloy is widely used in the manufacture of components that must have low density and high corrosion resistance and fatigue strength. The fatigue strength can be improved by surface modification. The aim of this study was to determine the influence of [...] Read more.
The Ti-6Al-4V alloy is widely used in the manufacture of components that must have low density and high corrosion resistance and fatigue strength. The fatigue strength can be improved by surface modification. The aim of this study was to determine the influence of plasma nitriding on the fatigue behavior of a Ti-6Al-4V alloy with a lamellar microstructure (Widmanstätten type). Nitriding was executed at 720 °C for 4 h in an atmosphere with N2, Ar, and H2. Microstructure characterization of the samples was carried out by X-ray diffraction analysis, optical microscopy, and scanning electron microscopy. The average roughness of the specimens was determined, and fatigue tests were executed in a bending–rotating machine with reverse tension cycles (R = −1). X-ray diffraction analysis of the nitrided alloy revealed the following matrix phases: α, β, ε-Ti2N, and δ-TiN. A nitrogen diffusion layer was formed between the substrate and the titanium nitrides. Plasma nitriding resulted in an increase in low-cycle fatigue strength, whereas at high cycles of 200 MPa, both conditions exhibited similar behaviors. The fracture surface of the fatigue-tested specimens clearly revealed the lamellar microstructure. The fracture mechanism in the non-nitrided specimens appears to be due to cracking at the interface of the α and β phases of the lamellar microstructure. Full article
(This article belongs to the Special Issue Probabilistic Mechanical Fatigue and Fracture of Materials)
Show Figures

Figure 1

18 pages, 3161 KiB  
Article
The Unified Creep-Fatigue Equation for Stainless Steel 316
by Dan Liu, Dirk John Pons and Ee-hua Wong
Metals 2016, 6(9), 219; https://doi.org/10.3390/met6090219 - 10 Sep 2016
Cited by 13 | Viewed by 8574
Abstract
Background—The creep-fatigue properties of stainless steel 316 are of interest because of the wide use of this material in demanding service environments, such as the nuclear industry. Need—A number of models exist to describe creep-fatigue behaviours, but they are limited by the need [...] Read more.
Background—The creep-fatigue properties of stainless steel 316 are of interest because of the wide use of this material in demanding service environments, such as the nuclear industry. Need—A number of models exist to describe creep-fatigue behaviours, but they are limited by the need to obtain specialized coefficients from a large number of experiments, which are time-consuming and expensive. Also, they do not generalise to other situations of temperature and frequency. There is a need for improved formulations for creep-fatigue, with coefficients that determinable directly from the existing and simple creep-fatigue tests and creep rupture tests. Outcomes—A unified creep-fatigue equation is proposed, based on an extension of the Coffin-Manson equation, to introduce dependencies on temperature and frequency. The equation may be formulated for strain as ε p = C 0 c ( T , t , ε p ) N β 0 , or as a power-law ε p = C 0 c ( T , t ) N β 0 b ( T , t ) . These were then validated against existing experimental data. The equations provide an excellent fit to data (r2 = 0.97 or better). Originality—This work develops a novel formulation for creep-fatigue that accommodates temperature and frequency. The coefficients can be obtained with minimum experimental effort, being based on standard rather than specialized tests. Full article
(This article belongs to the Special Issue Fatigue Damage)
Show Figures

Figure 1

Back to TopTop