Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = α-diimine palladium complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2826 KiB  
Article
Theoretical Investigations of Para-Methoxystyrene/Styrene Polymerization Catalyzed by Cationic Methyl- and Dibenzobarrelene-Based α-Diimine Palladium Complexes
by Ling Zhu, Yi Luo, Xin Wen, Wenzhen Zhang and Guangli Zhou
Inorganics 2024, 12(12), 315; https://doi.org/10.3390/inorganics12120315 - 5 Dec 2024
Cited by 1 | Viewed by 1031
Abstract
The polymerization mechanism of para-methoxystyrene catalyzed by cationic α-diimine palladium complexes with various ancillary ligands was rigorously examined using density functional theory. In the classical methyl-based α-diimine palladium complex [{(2,6-iPr2C6H3)-N=C(Me)-C(Me)=N-2,6-iPr [...] Read more.
The polymerization mechanism of para-methoxystyrene catalyzed by cationic α-diimine palladium complexes with various ancillary ligands was rigorously examined using density functional theory. In the classical methyl-based α-diimine palladium complex [{(2,6-iPr2C6H3)-N=C(Me)-C(Me)=N-2,6-iPr2C6H3)}PdMe]+ (A+), the 2,1-insertion of para-methoxystyrene is favored over the 1,2-insertion, both thermodynamically and kinetically, during the chain initiation step. The resulting thermodynamically favored η3-π-benzyl intermediates face a substantial energy barrier, yielding only trace amounts of polymer, as experimentally verified. In contrast, the dibenzobarrelene-based α-diimine palladium complex [{(2,6-iPr2C6H3)-N=C(R)-C(R)=N-2,6-iPr2C6H3)}PdMe]+ (R = dibenzobarrelene, B+) shows similar energy barriers for both 2,1- and 1,2-insertions. Continuous 2,1/2,1 or 2,1/1,2 insertions are impeded by excessive energy barriers. However, theoretical calculations reveal that the 1,2-insertion product can seamlessly transition into the chain propagation stage, producing a polymer with high 1,2-regioselectivity. The observed activity of complexes A+ or B+ towards para-methoxystyrene polymerization stems from the energy barrier differences between the 1,2- and 2,1-insertions, influenced by the steric hindrance from the ancillary ligands. Further investigation into the effects of steric hindrance on the chain initiation stage involved computational modeling of analogous complexes with increased steric bulk. These studies established a direct correlation between the energy barrier difference ∆∆G (1,2–2,1) and the van der Waals volume of the ancillary ligand. Larger van der Waals volumes correspond to reduced energy barrier differences, thus enhancing the regioselectivity for para-methoxystyrene polymerization. Moreover, the experimental inertness of complex B+ towards styrene polymerization is attributed to the formation of stable kinetic and thermodynamic 2,1-insertion intermediates, which obstruct further styrene monomer insertion due to an extremely high reactive energy barrier. These findings contribute to a deeper understanding of the mechanistic aspects and offer insights for designing new transition metal catalysts for the polymerization of para-alkoxystyrenes. Full article
Show Figures

Figure 1

11 pages, 2177 KiB  
Article
Nickel-Catalyzed Ethylene Copolymerization with Vinylalkoxysilanes: A Computational Study
by Zhihui Song, Rong Gao, Changjiang Wu, Qingqiang Gou, Gang Zheng, Junjie Liu, Shifang Yang and Huasheng Feng
Polymers 2024, 16(6), 762; https://doi.org/10.3390/polym16060762 - 10 Mar 2024
Cited by 1 | Viewed by 1919
Abstract
Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene [...] Read more.
Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene copolymerization with various polar monomers, the α-diimine nickel catalysts have generally exhibited a much worse performance in these copolymerizations compared to their palladium counterparts. Recently, Brookhart et al. reported a notable exception, demonstrating that α-diimine nickel catalysts could catalyze the ethylene copolymerization with some vinylalkoxysilanes effectively, producing functionalized polyethylene incorporating trialkoxysilane (-Si(OR)3) groups. This breakthrough is significant since Pd-catalyzed copolymerizations are commercially less usable due to the high cost of palladium. Thus, the utilization of Ni, given its abundance in raw materials and cost-effectiveness, is a landmark in ethylene/polar vinyl monomer copolymerization. Inspired by these findings, we used density functional theory (DFT) calculations to investigate the mechanistic study of ethylene copolymerization with vinyltrimethoxysilane (VTMoS) catalyzed by Brookhart-type nickel catalysts, aiming to elucidate the molecular-level understanding of this unique reaction. Initially, the nickel complexes and cationic active species were optimized through DFT calculations. Subsequently, we explored the mechanisms including the chain initiation, chain propagation, and chain termination of ethylene homopolymerization and copolymerization catalyzed by Brookhart-type complexes. Finally, we conducted an energetic analysis of both the in-chain and chain-end of silane enchainment. It was found that chain initiation is the dominant step in the ethylene homopolymerization catalyzed by the α-diimine Ni complex. The 1,2- and 2,1-insertion of vinylalkoxysilane exhibit similar barriers, explaining the fact that both five-membered and four-membered chelates were identified experimentally. After the VTMoS insertion, the barriers of ethylene reinsertion become higher, indicating that this step is the rate-determining step, which could be attributed to the steric hindrance between the incoming ethylene and the bulky silane substrate. We have also reported the energetic analysis of the distribution of polar substrates. The dominant pathway of chain-end -Si(OR)3 incorporation is suggested as chain-walking → ring-opening → ethylene insertion, and the preference of chain-end -Si(OR)3 incorporation is primarily attributed to the steric repulsion between the pre-inserted silane group and the incoming ethylene molecule, reducing the likelihood of in-chain incorporation. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 3696 KiB  
Article
A DFT Study of the Copolymerization of Methyl Vinyl Sulfone and Ethylene Catalyzed by Phosphine–Sulfonate and α-Diimine Palladium Complexes
by Ling Zhu, Shuang Li, Xiaohui Kang, Wenzhen Zhang and Yi Luo
Catalysts 2023, 13(6), 1026; https://doi.org/10.3390/catal13061026 - 20 Jun 2023
Cited by 1 | Viewed by 1925
Abstract
Density functional theory (DFT) calculations were comparatively carried out to reveal the origins of different catalytic performances from phosphine–benzene sulfonate (A, [{P^O}PdMe(L)] (P^O = Κ2-P,O-Ar2PC6H4SO3 with Ar = 2-MeOC6H4 [...] Read more.
Density functional theory (DFT) calculations were comparatively carried out to reveal the origins of different catalytic performances from phosphine–benzene sulfonate (A, [{P^O}PdMe(L)] (P^O = Κ2-P,O-Ar2PC6H4SO3 with Ar = 2-MeOC6H4)) and α-diimine (B, [{N^N}PdMe(Cl)] (N^N = (ArN=C(Me)-C(Me)=NAr) with Ar = 2,6-iPr2C6H3)) palladium complexes toward the copolymerization of ethylene and methyl vinyl sulfone (MVS). Having achieved agreement between theory and experiment, it was found that the favorable 2,1-selective insertion of MVS into phosphine–sulfonate palladium complex A was due to there being less structural deformations in the catalyst and monomer. Both the MVS and ethylene insertions were calculated, and the former was found to be more favorable for chain initiation and chain propagation. In the case of α-diimine palladium system B, the resulting product of the first MVS insertion was quite stable, and the stronger O-backbiting interaction hampered the insertion of the incoming ethylene molecule. These computational results are expected to provide some hints for the design of transition metal copolymerization catalysts. Full article
(This article belongs to the Special Issue Metal-Organic Catalyst for High Performance Materials)
Show Figures

Graphical abstract

Back to TopTop