Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Ångström clearness index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1187 KB  
Article
Assessment of Sunshine Duration for Various Time Resolutions Based on Pyranometric Data (An Example from Temperate Transition Climate of Central Europe)
by Krzysztof Błażejczyk, Jarosław Baranowski and Anna Błażejczyk
Atmosphere 2026, 17(1), 83; https://doi.org/10.3390/atmos17010083 - 14 Jan 2026
Abstract
Sunshine duration (SD) is one of the essential meteorological variables. It represents the sum of time for which direct solar radiation with an intensity above 120 W∙m−2 reaches the Earth’s surface. In the contemporary observational routine, automatic electronic devices are [...] Read more.
Sunshine duration (SD) is one of the essential meteorological variables. It represents the sum of time for which direct solar radiation with an intensity above 120 W∙m−2 reaches the Earth’s surface. In the contemporary observational routine, automatic electronic devices are in use. The pyranometric method based on the measurements of global solar radiation measurements (Kglob) is also proposed by WMO to assess SD. The aim of the paper is to study the accuracy of the Slob–Monna method (SD-WMO), recommended by WMO to calculate sunshine duration. Alternatively, the author’s method, which is based on the Ångström clearness index (SD-ACI), was used to approximate SD. In this purpose, two years series of SD and Kglob observations at four locations in Poland (well representing Central European transitional climate zone) were analyzed. The result shows that, for SD-WMO, sunshine duration values are on average 16% higher than observed ones. For the SD-ACI method, they are only 5% higher. When verifying the accuracy of SD-WMO and SD-ACI approximations, we have found that both for daily and monthly periods the calculated SD sums are closer to the observed ones in the case of SD-ACI than for the SD-WMO method. The correlation coefficients are, respectively, 0.98 and 0.82 (for daily sums) as well as 0.99 and 0.88 for monthly sums. Full article
(This article belongs to the Section Meteorology)
20 pages, 4340 KB  
Article
Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area
by Riccardo Damiano, Alessia Sannino, Salvatore Amoruso and Antonella Boselli
Atmosphere 2022, 13(12), 2078; https://doi.org/10.3390/atmos13122078 - 10 Dec 2022
Cited by 6 | Viewed by 3543
Abstract
We report on the characterization of columnar aerosol optical and microphysical properties in the Naples Mediterranean area over a period of five years by the ground-based sun–sky–lunar photometer operating at our observational station in the frame of the AERONET network. Statistical and climatological [...] Read more.
We report on the characterization of columnar aerosol optical and microphysical properties in the Naples Mediterranean area over a period of five years by the ground-based sun–sky–lunar photometer operating at our observational station in the frame of the AERONET network. Statistical and climatological analyses of daily mean values of aerosol optical depth at 440 nm (AOD440) and Ångström exponent at 440/870 nm (α440/870) allowed for highlighting their typical seasonal behavior. In particular, we observe higher mean values of the AOD440 during summer or spring, which are consistent with an increased frequency of both Saharan dust transport events and biomass burning episodes affecting the measurement area in these periods of the year. Conversely, α440/870 does not show any typical seasonal trend. In order to gain information on the different aerosol contributions along the atmospheric column, the frequency distributions of AOD440 and α440/870 were analyzed and fitted by a superposition of Gaussian functions. The most populated modes are centered at α440/870 = 1.26 ± 0.07 and AOD440 = 0.16 ± 0.01. These values are associated with continental polluted aerosol mixed with sea salt aerosol and correspond to the background conditions typically observed in clear atmospheric conditions. Daily size distributions averaged over each month highlight that the fine aerosol component always prevails over the coarse fraction, except for the few months in which Saharan dust events are particularly frequent. Finally, the mean value of the SSA at 440 nm resulted as 0.94 ± 0.05, while the refractive index real and imaginary part were 1.47 ± 0.07 and (6.5 ± 0.2) × 10−3, respectively. These values are in agreement with those observed in other Mediterranean sites located in Southern Italy, evidencing a rather characteristic feature of the geographical region. Full article
(This article belongs to the Special Issue Natural Sources Aerosol Remote Monitoring)
Show Figures

Figure 1

13 pages, 1949 KB  
Article
Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation
by Alnilam Fernandes, Aleksander Pietruczuk, Artur Szkop and Janusz Krzyścin
Atmosphere 2021, 12(7), 812; https://doi.org/10.3390/atmos12070812 - 24 Jun 2021
Cited by 5 | Viewed by 2461
Abstract
Atmospheric aerosol and ultraviolet index (UVI) measurements performed in Racibórz (50.08° N, 18.19° E) were analyzed for the period June–September 2019. Results of the following observations were taken into account: columnar characteristics of the aerosols (aerosol thickness, Angstrom exponent, single scattering albedo, asymmetry [...] Read more.
Atmospheric aerosol and ultraviolet index (UVI) measurements performed in Racibórz (50.08° N, 18.19° E) were analyzed for the period June–September 2019. Results of the following observations were taken into account: columnar characteristics of the aerosols (aerosol thickness, Angstrom exponent, single scattering albedo, asymmetry factor) obtained from standard CIMEL sun-photometer observations and parameters of aerosol layers (ALs) in the free troposphere (the number of layers and altitudes of the base and top) derived from continuous monitoring by a CHM-15k ceilometer. Three categories of ALs were defined: residues from the daily evolution of the planetary boundary layer (PBL) aerosols, from the PBL-adjacent layer, and from the elevated layer above the PBL. Total column ozone measurements taken by the Ozone-Monitoring Instrument on board NASA’s Aura satellite completed the list of variables used to model UVI variability under clear-sky conditions. The aim was to present a hybrid model (radiative transfer model combined with a regression model) for determining ALs’ impact on the observed UVI series. First, a radiative transfer model, the Tropospheric Ultraviolet–Visible (TUV) model, which uses typical columnar characteristics to describe UV attenuation in the atmosphere, was applied to calculate hypothetical surface UVI values under clear-sky conditions. These modeled values were used to normalize the measured UVI data obtained during cloudless conditions. Next, a regression of the normalized UVI values was made using the AL characteristics. Random forest (RF) regression was chosen to search for an AL signal in the measured data. This explained about 55% of the variance in the normalized UVI series under clear-sky conditions. Finally, the UVI values were calculated as the product of the RF regression and the relevant UVIs by the columnar TUV model. The root mean square error and mean absolute error of the hybrid model were 1.86% and 1.25%, respectively, about 1 percentage point lower than corresponding values derived from the columnar TUV model. The 5th–95th percentile ranges of the observation/model differences were [−2.5%, 2.8%] and [−3.0%, 5.3%] for the hybrid model and columnar TUV model, respectively. Therefore, the impact of ALs on measured surface UV radiation could be demonstrated using the proposed AL characteristics. The statistical analysis of the UVI differences between the models allowed us to identify specific AL configuration responsible for these differences. Full article
(This article belongs to the Special Issue Atmospheric Applications in Microwave Radiometry)
Show Figures

Figure 1

31 pages, 7697 KB  
Article
A Global Climatology of Dust Aerosols Based on Satellite Data: Spatial, Seasonal and Inter-Annual Patterns over the Period 2005–2019
by Maria Gavrouzou, Nikolaos Hatzianastassiou, Antonis Gkikas, Marios-Bruno Korras-Carraca and Nikolaos Mihalopoulos
Remote Sens. 2021, 13(3), 359; https://doi.org/10.3390/rs13030359 - 21 Jan 2021
Cited by 28 | Viewed by 5348
Abstract
A satellite-based algorithm is developed and used to determine the presence of dust aerosols on a global scale. The algorithm uses as input aerosol optical properties from the MOderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Collection 6.1 and Ozone Monitoring Instrument (OMI)-Aura version v003 (OMAER-UV) [...] Read more.
A satellite-based algorithm is developed and used to determine the presence of dust aerosols on a global scale. The algorithm uses as input aerosol optical properties from the MOderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Collection 6.1 and Ozone Monitoring Instrument (OMI)-Aura version v003 (OMAER-UV) datasets and identifies the existence of dust aerosols in the atmosphere by applying specific thresholds, which ensure the coarse size and the absorptivity of dust aerosols, on the input optical properties. The utilized aerosol optical properties are the multiwavelength aerosol optical depth (AOD), the Aerosol Absorption Index (AI) and the Ångström Exponent (a). The algorithm operates on a daily basis and at 1° × 1° latitude-longitude spatial resolution for the period 2005–2019 and computes the absolute and relative frequency of the occurrence of dust. The monthly and annual mean frequencies are calculated on a pixel level for each year of the study period, enabling the study of the seasonal as well as the inter-annual variation of dust aerosols’ occurrence all over the globe. Temporal averaging is also applied to the annual values in order to estimate the 15-year climatological mean values. Apart from temporal, a spatial averaging is also applied for the entire globe as well as for specific regions of interest, namely great global deserts and areas of desert dust export. According to the algorithm results, the highest frequencies of dust occurrence (up to 160 days/year) are primarily observed over the western part of North Africa (Sahara), and over the broader area of Bodélé, and secondarily over the Asian Taklamakan desert (140 days/year). For most of the study regions, the maximum frequencies appear in boreal spring and/or summer and the minimum ones in winter or autumn. A clear seasonality of global dust is revealed, with the lowest frequencies in November–December and the highest ones in June. Finally, an increasing trend of global dust frequency of occurrence from 2005 to 2019, equal to 56.2%, is also found. Such an increasing trend is observed over all study regions except for North Middle East, where a slight decreasing trend (−2.4%) is found. Full article
(This article belongs to the Special Issue Active and Passive Remote Sensing of Aerosols and Clouds)
Show Figures

Graphical abstract

Back to TopTop