Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Instruments
2.2. Columnar Aerosol Properties
2.3. Aerosol Source Identification
3. Results and Discussion
3.1. Seasonal and Statistical Analysis
3.2. Dust Aerosol Characterization
3.3. Aerosol Microphysical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Takamura, T.; Nakajima, T.; SKYNET Community Group. Overview of SKYNET and its activities. Proceedings of AERONET workshop, El Arenosillo. Opt. Pura Apl. 2004, 37, 3303–3308. [Google Scholar]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an Advanced Sustainable European Aerosol Lidar Network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, H.-Y.; Lin, C.-H.; Pani, S.K.; Lin, N.-H.; Lee, C.T.; Janjai, S.; Holben, B.N.; Chantara, S. Columnar aerosol types and compositions over peninsular Southeast Asia based on long-term AERONET data. Air Qual. Atmos. Health 2021. [Google Scholar] [CrossRef]
- Aladodo, S.S.; Akoshile, C.O.; Ajibola, T.B. Seasonal Tropospheric Aerosol Classification Using AERONET Spectral Absorption Properties in African Locations. Aerosol. Sci. Eng. 2022, 6, 246–266. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. 2012, 117, D17203. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Kumar, K.R.; Zhao, T.; Ali, G. The Contribution of Different Aerosol Types to Direct Radiative Forcing over Distinct Environments of Pakistan Inferred from the AERONET Data. Environ. Res. Lett. 2020, 15, 114062. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, K.R.; Zhao, T. The Climatology of Aerosol Optical Thickness and Radiative Effects in Southeast Asia from 18-Years of Ground-Based Observations. Environ. Pollut. 2019, 254, 113025. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Yang, X.; Wu, H.; Cai, L.; Qi, P. Aerosol Optical Properties at Seven AERONET Sites over Middle East and Eastern Mediterranean Sea. Atmos. Environ. 2020, 243, 117884. [Google Scholar] [CrossRef]
- Logothetis, S.-A.; Salamalikis, V.; Kazantzidis, A. Aerosol Classification in Europe, Middle East, North Africa and Arabian Peninsula Based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D.G. Aerosol Climatology over Four AERONET Sites: An Overview. Atmos. Environ. 2008, 42, 1892–1906. [Google Scholar] [CrossRef]
- Basart, S.; Pérez, C.; Cuevas, E.; Baldasano, J.M.; Gobbi, G.P. Aerosol Characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from Direct-Sun AERONET Observations. Atmos. Chem. Phys. 2009, 9, 8265–8282. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-H.; Lei, H.-W.; Pani, S.K.; Huang, H.-Y.; Lin, N.-H.; Welton, E.J.; Chang, S.-C.; Wang, Y.-C. Determination of Lidar Ratio for Major Aerosol Types over Western North Pacific Based on Long-Term MPLNET Data. Remote Sens. 2020, 12, 2769. [Google Scholar] [CrossRef]
- Rogozovsky, I.; Ansmann, A.; Althausen, D.; Heese, B.; Engelmann, R.; Hofer, J.; Baars, H.; Schechner, Y.; Lyapustin, A.; Chudnovsky, A. Impact of Aerosol Layering, Complex Aerosol Mixing, and Cloud Coverage on High-Resolution MAIAC Aerosol Optical Depth Measurements: Fusion of Lidar, AERONET, Satellite, and Ground-Based Measurements. Atmos. Environ. 2021, 247, 118163. [Google Scholar] [CrossRef]
- Viswanatha Vachaspati, C.; Reshma Begam, G.; Nazeer Ahammed, Y.; Raghavendra Kumar, K.; Reddy, R.R. Characterization of Aerosol Optical Properties and Model Computed Radiative Forcing over a Semi-Arid Region, Kadapa in India. Atmos. Res. 2018, 209, 36–49. [Google Scholar] [CrossRef]
- Gerasopoulos, E.; Kouvarakis, G.; Babasakalis, P.; Vrekoussis, M.; Putaud, J.-P.; Mihalopoulos, N. Origin and Variability of Particulate Matter (PM10) Mass Concentrations over the Eastern Mediterranean. Atmos. Environ. 2006, 40, 4679–4690. [Google Scholar] [CrossRef]
- Dubovik, O.; Li, Z.; Mishchenko, M.I.; Tanré, D.; Karol, Y.; Bojkov, B.; Cairns, B.; Diner, D.J.; Espinosa, W.R.; Goloub, P.; et al. Polarimetric Remote Sensing of Atmospheric Aerosols: Instruments, Methodologies, Results, and Perspectives. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 474–511. [Google Scholar] [CrossRef]
- Di Iorio, T.; di Sarra, A.; Sferlazzo, D.M.; Cacciani, M.; Meloni, D.; Monteleone, F.; Fuà, D.; Fiocco, G. Seasonal Evolution of the Tropospheric Aerosol Vertical Profile in the Central Mediterranean and Role of Desert Dust. J. Geophys. Res. Atmos. 2009, 114, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fotiadi, A.; Hatzianastassiou, N.; Drakakis, E.; Matsoukas, C.; Pavlakis, K.G.; Hatzidimitriou, D.; Gerasopoulos, E.; Mihalopoulos, N.; Vardavas, I. Aerosol Physical and Optical Properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network Data. Atmos. Chem. Phys. 2006, 6, 5399–5413. [Google Scholar] [CrossRef] [Green Version]
- Toledano, C.; Cachorro, V.E.; Berjon, A.; de Frutos, A.M.; Sorribas, M.; de la Morena, B.A.; Goloub, P. Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 795–807. [Google Scholar] [CrossRef]
- Santese, M.; De Tomasi, F.; Perrone, M.R. Advection Patterns and Aerosol Optical and Microphysical Properties by AERONET over South-East Italy in the Central Mediterranean. Atmos. Chem. Phys. 2008, 8, 1881–1896. [Google Scholar] [CrossRef]
- Toledano, C.; Cachorro, V.E.; de Frutos, A.M.; Torres, B.; Berjón, A.; Sorribas, M.; Stone, R.S. Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain). J. Appl. Meteorol. Climatol. 2009, 48, 962–981. [Google Scholar] [CrossRef]
- Boselli, A.; Caggiano, R.; Cornacchia, C.; Madonna, F.; Lucia, M.; Macchiato, M.; Pappalardo, G.; Trippetta, S. Multi Year Sun-Photometer Measurements for Aerosol Characterization in a Central Mediterranean Site. Atmos. Res. 2012, 104, 98–110. [Google Scholar] [CrossRef]
- Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Léon, J.F. Absorption Properties of Mediterranean Aerosols Obtained from Multi-Year Ground-Based Remote Sensing Observations. Atmos. Chem. Phys. 2013, 13, 9195–9210. [Google Scholar] [CrossRef] [Green Version]
- Benkhalifa, J.; Léon, J.; Chaabane, M. Aerosol Optical Properties of Western Mediterranean Basin from Multi-Year AERONET Data. J. Atmos. Sol. -Terr. Phys. 2017, 164. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Baldasano, J.M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V.E. A Long Saharan Dust Event over the Western Mediterranean: Lidar, Sun Photometer Observations, and Regional Dust Modeling. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Barnaba, F.; Gobbi, G.P. Aerosol Seasonal Variability over the Mediterranean Region and Relative Impact of Maritime, Continental and Saharan Dust Particles over the Basin from MODIS Data in the Year 2001. Atmos. Chem. Phys. 2004, 4, 2367–2391. [Google Scholar] [CrossRef] [Green Version]
- Santese, M.; De Tomasi, F.; Perrone, M.R. AERONET Versus MODIS Aerosol Parameters at Different Spatial Resolutions over Southeast Italy. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Floutsi, A.A.; Korras-Carraca, M.B.; Matsoukas, C.; Hatzianastassiou, N.; Biskos, G. Climatology and Trends of Aerosol Optical Depth over the Mediterranean Basin during the Last 12 years (2002–2014) Based on Collection 006 MODIS-Aqua Data. Sci. Total Environ. 2016, 551–552, 292–303. [Google Scholar] [CrossRef]
- Mishra, A.K.; Rudich, Y.; Koren, I. Spatial Boundaries of Aerosol Robotic Network (AERONET) Observations over the Mediterranean Basin. Geophys. Res. Lett. 2016, 43, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Tuna Tuygun, G.; Gündoğdu, S.; Elbir, T. Estimation of Ground-Level Particulate Matter Concentrations Based on Synergistic Use of MODIS, MERRA-2 and AERONET AODs over a Coastal Site in the Eastern Mediterranean. Atmos. Environ. 2021, 261, 118562. [Google Scholar] [CrossRef]
- Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol Optical Properties at Lampedusa (Central Mediterranean). 1. Influence of Transport and Identification of Different Aerosol Types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Formenti, P.; Mbemba Kabuiku, L.; Chiapello, I.; Ducos, F.; Dulac, F.; Tanré, D. Aerosol Optical Properties Derived from POLDER-3/PARASOL (2005–2013) over the Western Mediterranean Sea—Part 1: Quality Assessment with AERONET and in Situ Airborne Observations. Atmos. Meas. Tech. 2018, 11, 6761–6784. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Armenante, M.; D’Avino, L.; D’Isidoro, M.; Pisani, G.; Spinelli, N.; Wang, X. Atmospheric Aerosol Characterization Over Naples During 2000–2003 EARLINET Project: Planetary Boundary-Layer Evolution and Layering. Bound. -Layer Meteorol. 2009, 132, 151–165. [Google Scholar] [CrossRef]
- Pappalardo, G. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure. EPJ Web Conf. 2018, 176, 09004. [Google Scholar] [CrossRef]
- Barreto, Á.; Cuevas, E.; Granados-Muñoz, M.-J.; Alados-Arboledas, L.; Romero, P.M.; Gröbner, J.; Kouremeti, N.; Almansa, A.F.; Stone, T.; Toledano, C.; et al. The New Sun-Sky-Lunar Cimel CE318-T Multiband Photometer; a Comprehensive Performance Evaluation. Atmos. Meas. Tech. 2016, 9, 631–654. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; King, M. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Sannino, A.; D’Emilio, M.; Castellano, P.; Amoruso, S.; Boselli, A. Analysis of Air Quality during the COVID-19 Pandemic Lockdown in Naples (Italy). Aerosol. Air Qual. Res. 2021, 21, 200381. [Google Scholar] [CrossRef]
- De Marco, C.; Boselli, A.; D’Anna, A.; Sannino, A.; Sasso, G.; Sirignano, M.; Spinelli, N.; Wang, X. Mutiparametric Characterization of Atmospheric Particulate in a Heavy-Polluted Area of South Italy. Atmos. Clim. Sci. 2022, 12, 493–516. [Google Scholar] [CrossRef]
- Boselli, A.; Sannino, A.; D’Emilio, M.; Wang, X.; Amoruso, S. Aerosol Characterization during the Summer 2017 Huge Fire Event on Mount Vesuvius (Italy) by Remote Sensing and In Situ Observations. Remote Sens. 2021, 13, 2001. [Google Scholar] [CrossRef]
- Pisani, G.; Boselli, A.; Spinelli, N.; Wang, X. Characterization of Saharan Dust Layers over Naples (Italy) during 2000–2003 EARLINET Project. Atmos. Res. 2011, 102, 286–299. [Google Scholar] [CrossRef]
- Sannino, A.; Amoruso, S.; Damiano, R.; Scollo, S.; Sellitto, P.; Boselli, A. Optical and Microphysical Characterization of Atmospheric Aerosol in the Central Mediterranean during Simultaneous Volcanic Ash and Desert Dust Transport Events. Atmos. Res. 2022, 271, 1–9. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom Exponent and Bimodal Aerosol Size Distributions. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Nickovic, S.; Kallos, G.; Papadopoulos, A.; Kakaliagou, O. Model for Prediction of Desert Dust Cycle in the Atmosphere. J. Geophys. Res. 2001, 106, 18113–18130. [Google Scholar] [CrossRef] [Green Version]
- Lyamani, H.; Valenzuela, A.; Perez-Ramirez, D.; Toledano, C.; Granados-Muñoz, M.J.; Olmo, F.J.; Alados-Arboledas, L. Aerosol Properties over the Western Mediterranean Basin: Temporal and Spatial Variability. Atmos. Chem. Phys. 2015, 15, 2473–2486. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and Perspectives of High Impact Atmospheric Processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Perrone, M.; Lorusso, A.; Romano, S. Diurnal and Nocturnal Aerosol Properties by AERONET Sun-Sky-Lunar Photometer Measurements along Four Years. Atmos. Res. 2021, 265, 105889. [Google Scholar] [CrossRef]
- Bergamo, A.; Tafuro, A.M.; Kinne, S.; De Tomasi, F.; Perrone, M.R. Monthly-Averaged Anthropogenic Aerosol Direct Radiative Forcing over the Mediterranean Based on AERONET Aerosol Properties. Atmos. Chem. Phys. 2008, 8, 6995–7014. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Ignatov, A.; Holben, B.N.; Eck, T.F. The Lognormal Distribution as a Reference for Reporting Aerosol Optical Depth Statistics; Empirical Tests Using Multi-Year, Multi-Site AERONET Sunphotometer Data. Geophys. Res. Lett. 2000, 27, 3333–3336. [Google Scholar] [CrossRef]
- Knobelspiesse, K.D.; Pietras, C.; Fargion, G.S.; Wang, M.; Frouin, R.; Miller, M.A.; Subramaniam, A.; Balch, W.M. Maritime Aerosol Optical Thickness Measured by Handheld Sun Photometers. Remote Sens. Environ. 2004, 93, 87–106. [Google Scholar] [CrossRef]
- Evgenieva, T.; Gurdev, L.; Toncheva, E.; Dreischuh, T. Optical and Microphysical Properties of the Aerosol Field over Sofia, Bulgaria, Based on AERONET Sun-Photometer Measurements. Atmosphere 2022, 13, 884. [Google Scholar] [CrossRef]
- Zachary, M.; Niu, S.; Lü, J. Aerosol Optical and Micro-Physical Characteristic Derived from AERONET in Kenya. Open Access Libr. J. 2018, 5, 1–16. [Google Scholar] [CrossRef]
- Deep, A.; Pandey, C.P.; Nandan, H.; Singh, N.; Yadav, G.; Joshi, P.C.; Purohit, K.D.; Bhatt, S.C. Aerosols Optical Depth and Ångström Exponent over Different Regions in Garhwal Himalaya, India. Environ. Monit. Assess 2021, 193, 324. [Google Scholar] [CrossRef]
- Toledano, C.; Wiegner, M.; Garhammer, M.; Seefeldner, M.; Gasteiger, J.; MüLLER, D.; Koepke, P. Spectral Aerosol Optical Depth Characterization of Desert Dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 216–228. [Google Scholar] [CrossRef]
- Burgos, M.A.; Mateos, D.; Cachorro, V.E.; Toledano, C.; de Frutos, A.M.; Calle, A.; Herguedas, A.; Marcos, J.L. An Analysis of High Fine Aerosol Loading Episodes in North-Central Spain in the Summer 2013—Impact of Canadian Biomass Burning Episode and Local Emissions. Atmos. Environ. 2018, 184, 191–202. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Raptis, I.-P.; Kazadzis, S.; Eleftheratos, K.; Amiridis, V.; Fountoulakis, I. Single Scattering Albedo’s Spectral Dependence Effect on UV Irradiance. Atmosphere 2018, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent Trends in Aerosol Optical Properties Derived from AERONET Measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef]
- Raptis, I.-P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef]
Year | Nsol | AOD440 sol | α440/870 sol | Nlun | AOD440 lun | α440/870 lun |
---|---|---|---|---|---|---|
2017 | 267 | 0.19 ± 0.10 | 1.3 ± 0.4 | 106 | 0.20 ± 0.09 | 1.3 ± 0.4 |
2018 | 270 | 0.22 ± 0.12 | 1.2 ± 0.4 | 146 | 0.23 ± 0.13 | 1.2 ± 0.5 |
2019 | 272 | 0.21 ± 0.11 | 1.3 ± 0.4 | 142 | 0.23 ± 0.14 | 1.2 ± 0.4 |
2020 | 189 | 0.20 ± 0.11 | 1.4 ± 0.3 | 150 | 0.19 ± 0.11 | 1.3 ± 0.4 |
2021 | 250 | 0.21 ± 0.09 | 1.2 ± 0.4 | 123 | 0.23 ± 0.15 | 1.2 ± 0.4 |
Tot | 1248 | 0.21 ± 0.11 | 1.3 ± 0.4 | 667 | 0.22 ± 0.13 | 1.2 ± 0.4 |
Year | SD | NSD | ||||
---|---|---|---|---|---|---|
N | AOD440 | α440/870 | N | AOD440 | α440/870 | |
2017 | 44 | 0.24 ± 0.11 | 1.0 ± 0.4 | 223 | 0.18 ± 0.10 | 1.4 ± 0.3 |
2018 | 96 | 0.26 ± 0.12 | 0.9 ± 0.4 | 174 | 0.20 ± 0.11 | 1.4 ± 0.4 |
2019 | 73 | 0.27 ± 0.11 | 1.1 ± 0.5 | 199 | 0.18 ± 0.10 | 1.3 ± 0.4 |
2020 | 25 | 0.24 ± 0.10 | 1.0 ± 0.3 | 164 | 0.19 ± 0.09 | 1.4 ± 0.3 |
2021 | 64 | 0.29 ± 0.17 | 0.9 ± 0.4 | 187 | 0.19 ± 0.11 | 1.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damiano, R.; Sannino, A.; Amoruso, S.; Boselli, A. Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area. Atmosphere 2022, 13, 2078. https://doi.org/10.3390/atmos13122078
Damiano R, Sannino A, Amoruso S, Boselli A. Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area. Atmosphere. 2022; 13(12):2078. https://doi.org/10.3390/atmos13122078
Chicago/Turabian StyleDamiano, Riccardo, Alessia Sannino, Salvatore Amoruso, and Antonella Boselli. 2022. "Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area" Atmosphere 13, no. 12: 2078. https://doi.org/10.3390/atmos13122078
APA StyleDamiano, R., Sannino, A., Amoruso, S., & Boselli, A. (2022). Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area. Atmosphere, 13(12), 2078. https://doi.org/10.3390/atmos13122078