Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = vegetation impact
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 15641 KB  
Article
Evaluating Land Surface Temperature Trends and Explanatory Variables in the Miami Metropolitan Area from 2002–2021
by Alanna D. Shapiro and Weibo Liu
Geomatics 2024, 4(1), 1-16; https://doi.org/10.3390/geomatics4010001 - 25 Dec 2023
Cited by 9 | Viewed by 4981
Abstract
Physical and climatic variables such as Tree Canopy coverage, Normalized Difference Vegetation Index (NDVI), Distance to Roads, Distance to the Coast, Impervious Surface, and Precipitation can affect land surface temperature (LST). This paper examines the relationships using linear regression models and explores LST [...] Read more.
Physical and climatic variables such as Tree Canopy coverage, Normalized Difference Vegetation Index (NDVI), Distance to Roads, Distance to the Coast, Impervious Surface, and Precipitation can affect land surface temperature (LST). This paper examines the relationships using linear regression models and explores LST trends in the Miami Statistical Area (MSA) between 2002 and 2021. This study evaluates the effect of dry and wet seasons as well as day and night data on LST. A multiscale investigation is used to examine LST trends at the MSA scale, the individual county level, and at the pixel level to provide a detailed local perspective. The multiscale results are needed to understand spatiotemporal LST distributions to plan mitigation measures such as planting trees or greenery to regulate temperature and reduce the impacts of surface urban heat islands. The results indicate that LST values are rising in the MSA with a positive trend throughout the 20-year study period. The rate of change (RoC) for the wet season is smaller than for the dry season. The pixel-level analysis suggests that the RoC is primarily in rural areas and less apparent in urban areas. New development in rural areas may trigger increased RoC. This RoC relates to LST in the MSA and is different from global or regional RoC using air temperature. Results also suggest that climatic explanatory variables have different impacts during the night than they do in the daytime. For instance, the Tree Canopy variable has a positive coefficient, while during the day, the Tree Canopy variable has a negative relationship with LST. The Distance to the Coast variable changes from day to night as well. The increased granularity achieved with the multiscale analysis provides critical information needed to improve the effectiveness of potential mitigation efforts. Full article
Show Figures

Figure 1

22 pages, 31711 KB  
Article
GIS-Based Assessment of Fire Effects on Flash Flood Hazard: The Case of the Summer 2021 Forest Fires in Greece
by Niki Evelpidou, Maria Tzouxanioti, Evangelos Spyrou, Alexandros Petropoulos, Anna Karkani, Giannis Saitis and Markos Margaritis
GeoHazards 2023, 4(1), 1-22; https://doi.org/10.3390/geohazards4010001 - 23 Dec 2022
Cited by 6 | Viewed by 6404
Abstract
Greece, like the rest of the Mediterranean countries, faces wildland fires every year. Besides their short-term socioeconomic impacts, ecological destruction, and loss of human lives, forest fires also increase the burnt areas’ risk of flash flood phenomena, as the vegetation, which acted in [...] Read more.
Greece, like the rest of the Mediterranean countries, faces wildland fires every year. Besides their short-term socioeconomic impacts, ecological destruction, and loss of human lives, forest fires also increase the burnt areas’ risk of flash flood phenomena, as the vegetation, which acted in a protective way against runoff and soil erosion, is massively removed. Among the most severe wildland fire events in Greece were those of summer 2021, which were synchronous to the very severe heat waves that hit the broader area of the Balkan Peninsula. More than 3600 km2 of land was burnt and a significant amount of natural vegetation removed. Three of the burnt areas are examined in this work, namely, Attica, Northern Euboea, and the Peloponnese, in order to assess their risk of future flash flood events. The burnt areas were mapped, and their geological and geomorphological features studied. Flash flood hazard assessment was accomplished through a Boolean logic-based model applied through Geographic Information Systems (GIS) software, which allowed the prioritization of the requirement for protection by identifying which locations were most prone to flooding. The largest part of our study areas is characterized by geomorphological and geological conditions that facilitate flash flood events. According to our findings, in almost all study areas, the regions downstream of the burnt areas present high to very high flash flood hazard, due to their geomorphological and geological features (slope, drainage density, and hydrolithology). The only areas that were found to be less prone to flood events were Vilia and Varimpompi (Attica), due to their gentler slope inclinations and overall geomorphological characteristics. It is known that vegetation cover acts protectively against flash floods. However, in this case, large areas were severely burnt and vegetation is absent, resulting in the appearance of flash floods. Moreover, imminent flooding events are expected to be even more intense in the areas downstream of the burnt regions, possibly bearing even worse impacts on the local population, infrastructure, etc. Full article
(This article belongs to the Special Issue Advances in Applied Wildfire Research)
Show Figures

Figure 1

31 pages, 7309 KB  
Article
Land Conversion Dynamics in the Borana Rangelands of Southern Ethiopia: An Integrated Assessment Using Remote Sensing Techniques and Field Survey Data
by Michael Elias, Oliver Hensel, Uwe Richter, Christian Hülsebusch, Brigitte Kaufmann and Oliver Wasonga
Environments 2015, 2(1), 1-31; https://doi.org/10.3390/environments2010001 - 7 Jan 2015
Cited by 22 | Viewed by 10413 | Correction
Abstract
Conversion of rangelands into cultivated land is one of the main challenges affecting the management of rangelands in Ethiopia. In order to inform policy makers about trends in land-use conversion, this study examined the drivers, trends, and impacts of land conversions in five [...] Read more.
Conversion of rangelands into cultivated land is one of the main challenges affecting the management of rangelands in Ethiopia. In order to inform policy makers about trends in land-use conversion, this study examined the drivers, trends, and impacts of land conversions in five locations selected in the Borana rangelands of Southern Ethiopia. This study integrated survey interviews from agro-pastoralists, participatory appraisals, rainfall data, and remotely sensed satellite data from Landsat images taken in 1985 and 2011. Results indicate that there is a marked increase in cultivated land in some of the study sites while in the other sites there is a slight reduction. The bare lands increased in some parts of the study sites though there was slight recovery of grassland in some of the degraded areas. Settlement areas with permanent housing increased. Woodland vegetation decreased except on mountain escarpments where there were slight gains. The results further show that, during this period, bushland decreased while at the same time grassland increased. Shrub/grassland with seasonally flooded areas increased in the bottomlands. Inhabitants interviewed in the study areas perceived land use and land cover changes to be driven by interplay of recurrent drought, loss of pasture, food insecurity, and decline in income. Changes in policies that govern natural resources have influence the land use change in this area and the expansion of cultivation. Expansion of cultivation practices upon rangelands has resulting in significant loss of vegetation biomass and soil erosion, thereby precipitating rangeland degradation. The results provide comprehensive insights regarding the influence of internal and external drivers of land conversion that should be considered when making decisions for land use planning. Full article
(This article belongs to the Special Issue Selected Papers from 2014 Global Land Project (GLP) Asia Conference)
Show Figures

Figure 1

14 pages, 686 KB  
Article
Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests
by Stephan Kambach, Fernando Guerra, Stephan G. Beck, Isabell Hensen and Matthias Schleuning
Diversity 2013, 5(1), 1-14; https://doi.org/10.3390/d5010001 - 27 Dec 2012
Cited by 19 | Viewed by 9757
Abstract
Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In [...] Read more.
Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths) with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species. Full article
(This article belongs to the Special Issue Tropical Forests Ecology and Climate Change)
Show Figures

Figure 1

Back to TopTop