Evaluating Land Surface Temperature Trends and Explanatory Variables in the Miami Metropolitan Area from 2002–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. LST Data
2.2.2. Major Explanatory Variables of LST
2.3. Methods
2.3.1. LST Trend Analysis
2.3.2. LST Explanatory Factors Analysis
3. Results
3.1. Spatiotemporal Distributions of LST
3.2. LST Trend Analysis
3.3. LST Explanatory Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hibbard, K.; Hoffman, F.; Huntzinger, D.N.; West, T. Changes in Land Cover and Terrestrial Biogeochemistry. 2017. Available online: http://digitalcommons.unl.edu/usdeptcommercepubhttp://digitalcommons.unl.edu/usdeptcommercepub/583 (accessed on 3 May 2023).
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Handayani, H.H. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef]
- Harmay, N.S.M.; Choi, M. The urban heat island and thermal heat stress correlate with climate dynamics and energy budget variations in multiple urban environments. Sustain. Cities Soc. 2023, 91. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Gusso, A.; Bordin, F.; Veronez, M.; Cafruni, C.; Lenz, L.; Crija, S. Multitemporal Analysis of Thermal Distribution Characteristics for Urban Heat Islands Management. 1985. Available online: http://www.sciforum.net/conference/wsf-4 (accessed on 13 March 2023).
- Al Rifat, S.A.; Liu, W. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in miami metropolitan area during 1992–2016. Remote Sens. 2019, 11, 2493. [Google Scholar] [CrossRef]
- Alhawiti, R.H.; Mitsova, D. Using Landsat-8 Data to Explore the Correlation Between Urban Heat Island and Urban Land Uses. 2016. Available online: http://www.ijret.org (accessed on 11 March 2023).
- Bera, D.; Das Chatterjee, N.; Ghosh, S.; Dinda, S.; Bera, S. Recent trends of land surface temperature in relation to the influencing factors using Google Earth Engine platform and time series products in megacities of India. J. Clean. Prod. 2022, 379, 134735. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Hou, H.; Su, H.; Liu, K.; Li, X.; Chen, S.; Wang, W.; Lin, J. Driving forces of UHI changes in China’s major cities from the perspective of land surface energy balance. Sci. Total. Environ. 2022, 829, 154710. [Google Scholar] [CrossRef]
- Xi, M.; Zhang, W.; Li, W.; Liu, H.; Zheng, H. Distinguishing Dominant Drivers on LST Dynamics in the Qinling-Daba Mountains in Central China from 2000 to 2020. Remote. Sens. 2023, 15, 878. [Google Scholar] [CrossRef]
- You, M.; Lai, R.; Lin, J.; Zhu, Z. Quantitative analysis of a spatial distribution and driving factors of the urban heat island effect: A case study of Fuzhou Central Area, China. Int. J. Environ. Res. Public Health 2021, 18, 13088. [Google Scholar] [CrossRef]
- Liu, W.; Feddema, J.; Hu, L.; Zung, A.; Brunsell, N. Seasonal and diurnal characteristics of land surface temperature and major explanatory factors in Harris County, Texas. Sustainability 2017, 9, 2324. [Google Scholar] [CrossRef]
- Wang, Y.R.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote. Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Pandey, P.C.; Chauhan, A.; Maurya, N.K. Evaluation of earth observation datasets for LST trends over India and its implication in global warming. Ecol. Inform. 2022, 72, 101843. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Chen, L.; Li, M.; Huang, F.; Xu, S. Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. In Proceedings of the 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; pp. 840–845. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yu, D. Exploring the Relationships between Land Surface Temperature and Its Influencing Factors Using Multisource Spatial Big Data: A Case Study in Beijing, China. Remote. Sens. 2023, 15, 1783. [Google Scholar] [CrossRef]
- Xiao, R.-b.; Ouyang, Z.-y.; Zheng, H.; Li, W.-f.; Schienke, E.W.; Wang, X.-K. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Jumai, M.; Kasimu, A.; Liang, H.; Tang, L.; Aizizi, Y.; Zhang, X. A Study on the Spatial and Temporal Variation of Summer Surface Temperature in the Bosten Lake Basin and Its Influencing Factors. Land 2023, 12, 1185. [Google Scholar] [CrossRef]
- Kandel, H.; Melesse, A.; Whitman, D. An analysis on the urban heat island effect using radiosonde profiles and Landsat imagery with ground meteorological data in South Florida. Int. J. Remote. Sens. 2016, 37, 2313–2337. [Google Scholar] [CrossRef]
- The Urban and Rural Classifications. Available online: https://www.census.gov (accessed on 7 December 2023).
- Beginning of the South Florida Dry Season. Miami, FL. 2009. Available online: https://www.weather.gov/media/mfl/news/2009RainySeasonSummary.pdf (accessed on 15 May 2023).
- ACS. American Community Survey. Available online: https://www.census.gov/programs-surveys/acs (accessed on 13 February 2021).
- Wan, Z.; Li, Z.-L. A Physics-Based Algorithm for Retrieving Land-Surface Emissivity and Temperature from EOS/MODIS Data. IEEE Trans. Geosci. Remote. Sens. 1997, 35, 980–996. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol, version 1.1; Land Product Validation Subgroup (WGCV/CEOS): Washington, DC, USA, 2018; p. 58. [Google Scholar] [CrossRef]
- Duan, S.B.; Huang, C.; Liu, X.; Liu, M.; Sun, Y.; Gao, C. Spatio-Temporal Distribution Characteristics of Global Annual Maximum Land Surface Temperature Derived from MODIS Thermal Infrared Data From 2003 to 2019. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4690–4697. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Abunnasr, Y.; Mhawej, M. Towards a combined Landsat-8 and Sentinel-2 for 10-m land surface temperature products: The Google Earth Engine monthly Ten-ST-GEE system. Environ. Model. Softw. 2022, 155. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, C.; Tong, X.; Chen, S.; Lei, Z.; Wang, J. Spatial patterns of land surface temperature and their influencing factors: A case study in Suzhou, China. Remote Sens. 2019, 11, 182. [Google Scholar] [CrossRef]
- Winbourne, J.B.; Jones, T.S.; Garvey, S.M.; Harrison, J.L.; Wang, L.; Li, D.; Templer, P.H.; Hutyra, L.R. Tree transpiration and urban temperatures: Current understanding, implications, and future research directions. BioScience 2020, 70, 576–588. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total. Environ. 2020, 751, 142334. [Google Scholar] [CrossRef]
- Wujeska-Klause, A.; Pfautsch, S. The best urban trees for daytime cooling leave nights slightly warmer. Forests 2020, 11, 945. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef]
- Yang, L.; Huang, C.; Wylie Usgs Eros, B.K.; Coan, J.M. An Approach for Mapping Large-Area Impervious Surfaces: Synergistic use of Landsat-7 ETM+ and High Spatial Resolution Imagery. Can. J. Remote Sens. 2003, 29, 230–240. [Google Scholar] [CrossRef]
- Hartmann, D.L. Chapter 4 The Energy Balance of the Surface. Int. Geophys. 1994, 56, 81–114. [Google Scholar] [CrossRef]
- Si, M.; Li, Z.-L.; Nerry, F.; Tang, B.-H.; Leng, P.; Wu, H.; Zhang, X.; Shang, G. Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J. Photogramm. Remote Sens. 2022, 183, 321–335. [Google Scholar] [CrossRef]
- Prasetya, T.A.E.; Devi, R.M.; Fitrahanjani, C.; Wahyuningtyas, T.; Muna, S. Systematic assessment of the warming trend in Madagascar’s mainland daytime land surface temperature from 2000 to 2019. J. Afr. Earth Sci. 2022, 189, 104502. [Google Scholar] [CrossRef]
- Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. J. Geophys. Res. Atmos. 2016, 121, 2638–2657. [Google Scholar] [CrossRef]
- Zhao, B.; Mao, K.; Cai, Y.; Shi, J.; Li, Z.; Qin, Z.; Meng, X.; Shen, X.; Guo, Z. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017. Earth Syst. Sci. Data 2020, 12, 2555–2577. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Cecilia, J.X.; Jin, C.; Li, X. Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustain. Cities Soc. 2020, 63, 102443. [Google Scholar] [CrossRef]
- Jung, C.; Lee, Y.; Cho, Y.; Kim, S. A study of spatial soil moisture estimation using a multiple linear regression model and modis land surface temperature data corrected by conditional merging. Remote Sens. 2017, 9, 870. [Google Scholar] [CrossRef]
- Verdi, R.J.; Tomlinson, S.A.; Marella, R.L. Florida. Department of Transportation., Florida. Department of Environmental Protection, and Geological Survey (U.S.). In The Drought of 1998–2002: Impacts on Florida’s Hydrology and Landscape; U.S. Deptartment of the Interior, U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- National Weather Service. NOWData—NOAA Online Weather Data; National Weather Service: Silver Spring, MD, USA, 2018. [Google Scholar]
- Wang, W.; Liang, S.; Meyers, T. Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ. 2008, 112, 623–635. [Google Scholar] [CrossRef]
- Kambly, S.; Moreland, T.R. Land Cover Trends in the Southern Florida Coastal Plain; U.S. Geological Survey: Reston, VA, USA, 2009. Available online: http://www.usgs.gov/pubprod (accessed on 20 June 2023).
- Jacobs, C.; Klok, L.; Bruse, M.; Cortesão, J.; Lenzholzer, S.; Kluck, J. Are urban water bodies really cooling? Urban Clim. 2020, 32, 100607. [Google Scholar] [CrossRef]
- Chen, H.; Deng, Q.; Zhou, Z.; Ren, Z.; Shan, X. Influence of land cover change on spatio-temporal distribution of urban heat island—A case in Wuhan main urban area. Sustain. Cities Soc. 2022, 79, 103715. [Google Scholar] [CrossRef]
Variable | Description | Source | Spatial Resolution |
---|---|---|---|
Tree Canopy | Tree Canopy Percentage (%) | United States Department of Agriculture Forest Service (USDA) https://data.fs.usda.gov/geodata/rastergateway/treecanopycover 2016 CONUS dataset (assessed on 1 July 2022) | 1 Km |
Impervious Surfaces | Impervious Surfaces Percentage (%) | Multi-Resolution Land Characteristics Consortium Urban Imperviousness 2019 dataset for National Land Cover Dataset (NLCD) Imperviousness; https://www.mrlc.gov/ (assessed on 1 July 2022) | 1 Km |
NDVI | Normalized Difference Vegetation Index | Multi-Resolution Land Characteristics Consortium NLCD 2019 data https://www.mrlc.gov/ (assessed on 1 July 2022) | 1 Km |
Distance to the Coast | Distance to Coastal and Waterway (km) | Distance was calculated using the Euclidean distance tool in ArcGIS. The Florida waterways dataset was retrieved from the Florida Fish and Wildlife Conservation Commission. The coast data were from the US Tiger Census from 2020. | 1 Km |
Distance to the Roads | Distance to Primary Roads (km) | US Census https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html (assessed on 1 July 2022) 2020 Roads Shapefile https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html (assessed on 10 July 2022) Distance was calculated using the Euclidean distance tool in ArcGIS. | 1 Km |
Precipitation | Precipitation (cm) | National Oceanic and Atmospheric Administration (NOAA) National Weather Service, 5 years average of precipitation. | 1 Km |
Model | R2 | RoC (°C/Decade) | p-Value (×10−4) |
---|---|---|---|
MSA Wet | 0.480 | 0.340 | 7.00 |
MSA Dry | 0.451 | 1.510 | 11.9 |
MSA Avg | 0.549 | 0.928 | 1.85 |
PBC Wet | 0.302 | 0.290 | 121 |
PBC Dry | 0.393 | 1.530 | 30.9 |
PBC Avg | 0.518 | 0.972 | 3.45 |
BC Wet | 0.521 | 0.410 | 3.29 |
BC Dry | 0.494 | 1.560 | 5.52 |
BC Avg | 0.603 | 0.985 | 0.57 |
MDC Wet | 0.661 | 0.430 | 0.13 |
MDC Dry | 0.464 | 1.420 | 9.40 |
MDC Avg | 0.593 | 0.930 | 0.72 |
Model | NDVI | Tree Canopy | Impervious Surfaces | Distance to Roads | Precipitation | Distance to Water | R2 |
---|---|---|---|---|---|---|---|
Dry Day MSA | 7.028 | −12.924 | 3.648 | −4.013 | 0.523 | 4.147 | 0.611 |
Dry Day PBC | 12.274 | −20.875 | 4.153 | 0.000089* | 1.270 | 0.000080 | 0.510 |
Dry Day BC | −0.385 * | 3.739 | 2.697 | −3.050 | 7.709 | 2.353 | 0.764 |
Dry Day MDC | −0.50 * | −6.168 | 3.344 | −10.443 | 0.000 * | 2.559 | 0.647 |
Dry Night MSA | −6.864 | 3.690 | 0.107* | 1.228 | 3.317 | −2.946 | 0.660 |
Dry Night PBC | −8.991 | 2.359 | −0.037 * | −0.000042 * | 3.485 | 0.000031 | 0.742 |
Dry Night BC | −2.651 | −1.880 | −0.20* | −0.844 | 5.702 | 0.414 * | 0.686 |
Dry Night MDC | −3.141 | 4.579 | 0.446 | 0.268 * | −0.000021 * | −3.029 | 0.372 |
Wet Day MSA | 3.969 | −6.110 | 3.655 | −3.188 | 2.284 | 1.151 | 0.722 |
Wet Day PBC | 5.890 | −10.934 | 3.547 | 0.000 * | 4.536 | 0.000051 | 0.694 |
Wet Day BC | 3.360 | 0.140 * | 2.764 | −2.687 | 9.353 | 0.491 * | 0.809 |
Wet Day MDC | 1.310 * | −11.276 | 3.702 | −9.510 | 0.000* | 1.596 | 0.635 |
Wet Night MSA | −6.919 | 1.643 | −0.284 | 1.580 | 3.483 | −2.246 | 0.721 |
Wet Night PBC | −6.723 | −1.204 | 0.070* | −0.000041 * | 2.382 | 0.000032 | 0.850 |
Wet Night BC | −6.052 | −1.291 | −0.138 | −0.996 | 3.376 | 1.277 | 0.738 |
Wet Night MDC | −2.081 | 1.808 | 0.483 | 0.193 * | −0.0000032 * | −1.870 | 0.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapiro, A.D.; Liu, W. Evaluating Land Surface Temperature Trends and Explanatory Variables in the Miami Metropolitan Area from 2002–2021. Geomatics 2024, 4, 1-16. https://doi.org/10.3390/geomatics4010001
Shapiro AD, Liu W. Evaluating Land Surface Temperature Trends and Explanatory Variables in the Miami Metropolitan Area from 2002–2021. Geomatics. 2024; 4(1):1-16. https://doi.org/10.3390/geomatics4010001
Chicago/Turabian StyleShapiro, Alanna D., and Weibo Liu. 2024. "Evaluating Land Surface Temperature Trends and Explanatory Variables in the Miami Metropolitan Area from 2002–2021" Geomatics 4, no. 1: 1-16. https://doi.org/10.3390/geomatics4010001
APA StyleShapiro, A. D., & Liu, W. (2024). Evaluating Land Surface Temperature Trends and Explanatory Variables in the Miami Metropolitan Area from 2002–2021. Geomatics, 4(1), 1-16. https://doi.org/10.3390/geomatics4010001