Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Journal = Chemosensors
Section = Imaging for (Bio)chemical Sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3164 KiB  
Article
Assessment of Optical and Scanning Electron Microscopies for the Identification and Quantification of Asbestos Fibers and Typical Asbestos Bodies in Human Colorectal Cancer Tissues
by Alessandro Croce, Marinella Bertolotti, Donata Bellis, Alex Glorioso, Carlotta Bertolina, Marianna Farotto, Fabio Giacchero, Annalisa Roveta and Antonio Maconi
Chemosensors 2024, 12(10), 200; https://doi.org/10.3390/chemosensors12100200 - 1 Oct 2024
Viewed by 1530
Abstract
Asbestos research, identification, and quantification have been performed over the years, and the relationship between fiber inhalation and lung disease development is well defined. The same cannot be said for the gastroenteric system: the International Agency for Research on Cancer (IARC) believes that [...] Read more.
Asbestos research, identification, and quantification have been performed over the years, and the relationship between fiber inhalation and lung disease development is well defined. The same cannot be said for the gastroenteric system: the International Agency for Research on Cancer (IARC) believes that colorectal cancer (CRC) could be associated with asbestos exposure, but research has not demonstrated a casual nexus between exposure and CRC, despite highlighting an association tendency. The combination of scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) is the most applied technique in asbestos fiber identification in tissues and intestinal mucosa. In this study, SEM/EDS was applied to evaluate the presence of asbestos fibers and bodies (ABs) inside the tissue of eleven patients affected by CRC who had undergone environmental exposure due to living in an asbestos-polluted area where an Eternit plant had been active in the past. This technique was coupled with optical microscopy (OM) to verify whether the latter could be applied to evaluate the presence of these mineral phases, with the goal of understanding its suitability for identifying fibers and ABs in colon tissues. In addition to verifying the presence of fibers, this study allowed us to identify the deposition site of said fibers within the sample and possibly detect associated tissue reactions using OM, over a shorter time and at lower costs. Despite being a preliminary and descriptive work, the obtained results allowed us to propose a method involving first-sample OM observation to identify regulated (fibers with a length ≥ 5 μm, a thickness ≤ 3 μm, and a length/thickness ratio > 3) asbestos phases and ABs in the extra-respiratory system. In fact, OM and SEM/EDS provided similar information: no asbestiform morphology or ABs were found, but phyllosilicates and other inorganic materials were identified. This research needs to be continued using higher-resolution techniques to definitively rule out the presence of these fibers inside tissues whilst also increasing the number of patients involved. Full article
(This article belongs to the Section Imaging for (Bio)chemical Sensing)
Show Figures

Figure 1

17 pages, 7443 KiB  
Article
A ‘Turn-On’ Carbamazepine Sensing Using a Luminescent SiO2/-(CH2)3NH2/-C6H5 + Rh6G System
by Halyna Yankovych, Erika Dutková, Viktoriia Kyshkarova, Miroslava Vaclavikova and Inna Melnyk
Chemosensors 2023, 11(6), 332; https://doi.org/10.3390/chemosensors11060332 - 4 Jun 2023
Cited by 4 | Viewed by 1949
Abstract
Carbamazepine is a crucial medication used to treat nervous system disorders, and its low level of absorption in the human body suggests that a significant amount of it may be present in sewage water. Consequently, this pioneering research deals with the synthesis and [...] Read more.
Carbamazepine is a crucial medication used to treat nervous system disorders, and its low level of absorption in the human body suggests that a significant amount of it may be present in sewage water. Consequently, this pioneering research deals with the synthesis and application of a luminescent sensor based on rhodamine 6 G-modified bifunctional silica particles for the determination of carbamazepine. The sensing material was fabricated in one step by the sol–gel technique and the dye was adsorbed onto the surface from an alcohol solution. The composition, morphology and size of functionalized silica particles were determined by physico-chemical methods. The material’s features provide the possibility of its application as a sensing material for carbamazepine determination at a variety of concentrations. The sensor possesses a linear response towards carbamazepine in the concentration range of 0.8–200.0 μM with a limit of detection (LOD) of 17.9 μM and a limit of quantification (LOQ) of 59.7 μM and has demonstrated reliable quantification over a wide range of concentrations, from therapeutic to high fatal concentrations. Additionally, the sensing mechanism has been proposed, which involves the formation of hydrogen bonding between carbamazepine and Rhodamine 6G immobilized bifunctional silica particles. Full article
(This article belongs to the Special Issue Smart Chemosensors for Biosensing and Bioimaging)
Show Figures

Figure 1

16 pages, 5503 KiB  
Article
SERS-TLC Device for Simultaneous Determination of Sulfamethoxazole and Trimethoprim in Milk
by Frederico Luis Felipe Soares, Benedito Roberto de Alvarenga Junior and Renato Lajarim Carneiro
Chemosensors 2022, 10(12), 528; https://doi.org/10.3390/chemosensors10120528 - 12 Dec 2022
Cited by 4 | Viewed by 2225
Abstract
The aim of this work is to develop a device based on thin-layer chromatography coupled with surface-enhanced Raman spectroscopy (TLC-SERS) to analyze sulfamethoxazole (SMX) and trimethoprim (TMP) in commercial milk samples using chemometric tools. Samples were eluted in TLC plates, and a central [...] Read more.
The aim of this work is to develop a device based on thin-layer chromatography coupled with surface-enhanced Raman spectroscopy (TLC-SERS) to analyze sulfamethoxazole (SMX) and trimethoprim (TMP) in commercial milk samples using chemometric tools. Samples were eluted in TLC plates, and a central composite design (CCD) of two factors was performed to optimize the gold nanoparticle dispersion on TLC plates for SERS, aiming at the detection of both drugs at concentrations close to their maximum residual limits (MRLs). Following the optimization, hyperspectral images from the SERS were captured of the TLC plates. Multivariate curve resolution (MCR-ALS) and independent component analysis (ICA) chemometric techniques were used to extract the signals of the analytes. All the samples presented recovery values of 81–128% for TMP. The quantification of SMX was not possible due to SERS suppression by an interferent. However, it was possible to detect SMX at a concentration of two times the MRL (8.0 × 10−7 mol·L−1). The results demonstrate that the TLC-SERS device is a potential tool for the quantification of TMP and the detection of SMX in milk. Full article
(This article belongs to the Section Imaging for (Bio)chemical Sensing)
Show Figures

Graphical abstract

Back to TopTop