Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Zaira Maroccia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 202 KiB  
Editorial
Special Issue “Bacterial Toxins and Cancer”
by Sara Travaglione, Francesca Carlini, Zaira Maroccia and Alessia Fabbri
Int. J. Mol. Sci. 2024, 25(4), 2128; https://doi.org/10.3390/ijms25042128 - 9 Feb 2024
Cited by 2 | Viewed by 1407
Abstract
Infection is a major contributor to the development of cancer, with more than 15% of new cancer diagnoses estimated to be caused by infection [...] Full article
(This article belongs to the Special Issue Bacterial Toxins and Cancer)
18 pages, 1675 KiB  
Review
Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction
by Laura Fossatelli, Zaira Maroccia, Carla Fiorentini and Massimo Bonucci
Int. J. Mol. Sci. 2024, 25(1), 251; https://doi.org/10.3390/ijms25010251 - 23 Dec 2023
Cited by 22 | Viewed by 5303
Abstract
Apigenin is one of the most widespread flavonoids in the plant kingdom. For centuries, apigenin-containing plant preparations have been used in traditional medicines to treat diseases that have an inflammatory and/or degenerative component. In the 1980s, apigenin was proposed to interfere with the [...] Read more.
Apigenin is one of the most widespread flavonoids in the plant kingdom. For centuries, apigenin-containing plant preparations have been used in traditional medicines to treat diseases that have an inflammatory and/or degenerative component. In the 1980s, apigenin was proposed to interfere with the process of carcinogenesis. Since then, more and more evidence has demonstrated its anticancer efficacy, both in vitro and in vivo. Apigenin has been shown to target signaling pathways involved in the development and progression of cancer, such as PI3K/Akt/mTOR, MAPK/ERK, JAK/STAT, NF-κB, and Wnt/β-catenin pathways, and to modulate different hallmarks of cancer, such as cell proliferation, metastasis, apoptosis, invasion, and cell migration. Furthermore, apigenin modulates PD1/PD-L1 expression in cancer/T killer cells and regulates the percentage of T killer and T regulatory cells. Recently, apigenin has been studied for its synergic and additive effects when combined with chemotherapy, minimizing the side effects. Unfortunately, its low bioavailability and high permeability limit its therapeutic applications. Based on micro- and nanoformulations that enhance the physical stability and drug-loading capacity of apigenin and increase the bioavailability of apigenin, novel drug-delivery systems have been investigated to improve its solubility. Full article
Show Figures

Figure 1

18 pages, 809 KiB  
Review
Role of the Microbiota in Lung Cancer: Insights on Prevention and Treatment
by Federica Pizzo, Zaira Maroccia, Ivano Hammarberg Ferri and Carla Fiorentini
Int. J. Mol. Sci. 2022, 23(11), 6138; https://doi.org/10.3390/ijms23116138 - 30 May 2022
Cited by 31 | Viewed by 6307
Abstract
The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world’s deadliest cancers. [...] Read more.
The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world’s deadliest cancers. However, the mechanisms by which the microbiota can impact this type of cancer and patient survival and response to treatments remain poorly investigated. In this review, the peculiarities of the gut and lung microbial ecosystems have been highlighted, and recent findings illustrating the possible mechanisms underlying the microbiota–lung cancer interaction and the host immune response have been discussed. In addition, the mucosal immune system has been identified as a crucial communication frame to ease interactive dynamics between the immune system and the microbiota. Finally, the use of specific next-generation intestinal probiotic strains in counteracting airway diseases has been evaluated. We believe that restoring homeostasis and the balance of bacterial microflora should become part of the routine of integrated cancer interventions, using probiotics, prebiotics, and postbiotics, and promoting a healthy diet and lifestyle. Full article
(This article belongs to the Special Issue Integrative Oncology: From the Lab to New Therapeutic Possibilities)
Show Figures

Figure 1

31 pages, 1280 KiB  
Review
Effects of the Escherichia coli Bacterial Toxin Cytotoxic Necrotizing Factor 1 on Different Human and Animal Cells: A Systematic Review
by Francesca Carlini, Zaira Maroccia, Carla Fiorentini, Sara Travaglione and Alessia Fabbri
Int. J. Mol. Sci. 2021, 22(22), 12610; https://doi.org/10.3390/ijms222212610 - 22 Nov 2021
Cited by 16 | Viewed by 3754
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents [...] Read more.
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents a widely used tool to unravel the role played by these regulatory proteins in different biological processes. In this review, we summarized the data available in the scientific literature concerning the observed in vitro effects induced by CNF1. An article search was performed on electronic bibliographic resources. Screenings were performed of titles, abstracts, and full-texts according to PRISMA guidelines, whereas eligibility criteria were defined for in vitro studies. We identified a total of 299 records by electronic article search and included 76 original peer-reviewed scientific articles reporting morphological or biochemical modifications induced in vitro by soluble CNF1, either recombinant or from pathogenic Escherichia coli extracts highly purified with chromatographic methods. Most of the described CNF1-induced effects on cultured cells are ascribable to the modulating activity of the toxin on Rho GTPases and the consequent effects on actin cytoskeleton organization. All in all, the present review could be a prospectus about the CNF1-induced effects on cultured cells reported so far. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

14 pages, 2809 KiB  
Article
Association of Polygenic Risk Score and Bacterial Toxins at Screening Colonoscopy with Colorectal Cancer Progression: A Multicenter Case-Control Study
by Alfonso Piciocchi, Elena Angela Pia Germinario, Koldo Garcia Etxebarria, Silvia Rossi, Lupe Sanchez-Mete, Barbara Porowska, Vittoria Stigliano, Paolo Trentino, Andrea Oddi, Fabio Accarpio, Gian Luca Grazi, Giovanni Bruno, Massimo Bonucci, Massimo Giambenedetti, Patrizia Spigaglia, Fabrizio Barbanti, Slawomir Owczarek, Ida Luzzi, Elisabetta Delibato, Zaira Maroccia, Lorenza Nisticò, Carla Fiorentini, Mauro D’Amato, Roberta De Angelis and Alessia Fabbriadd Show full author list remove Hide full author list
Toxins 2021, 13(8), 569; https://doi.org/10.3390/toxins13080569 - 16 Aug 2021
Cited by 20 | Viewed by 5929
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for [...] Read more.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for tumor progression. Recent data suggest that certain bacterial toxins implicated in DNA attack or in proliferation, replication, and death can be risk factors for insurgence and progression of CRC. In this study, we recruited more than 300 biopsy specimens from people undergoing colonoscopy, and we analyzed to determine whether a correlation exists between the presence of bacterial genes coding for toxins possibly involved in CRC onset and progression and the different stages of CRC. We also analyzed to determine whether CRC-predisposing genetic factors could contribute to bacterial toxins response. Our results showed that CIF toxin is associated with polyps or adenomas, whereas pks+ seems to be a predisposing factor for CRC. Toxins from Escherichia coli as a whole have a higher incidence rate in adenocarcinoma patients compared to controls, whereas Bacteroides fragilis toxin does not seem to be associated with pre-cancerous nor with cancerous lesions. These results have been obtained irrespectively of the presence of CRC-risk loci. Full article
Show Figures

Figure 1

21 pages, 1531 KiB  
Review
Gut Microbiota and Colon Cancer: A Role for Bacterial Protein Toxins?
by Carla Fiorentini, Francesca Carlini, Elena Angela Pia Germinario, Zaira Maroccia, Sara Travaglione and Alessia Fabbri
Int. J. Mol. Sci. 2020, 21(17), 6201; https://doi.org/10.3390/ijms21176201 - 27 Aug 2020
Cited by 46 | Viewed by 6355
Abstract
Accumulating evidence indicates that the human intestinal microbiota can contribute to the etiology of colorectal cancer. Triggering factors, including inflammation and bacterial infections, may favor the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. In this context, certain bacterial [...] Read more.
Accumulating evidence indicates that the human intestinal microbiota can contribute to the etiology of colorectal cancer. Triggering factors, including inflammation and bacterial infections, may favor the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. In this context, certain bacterial pathogens can exert a pro-tumoral activity by producing enzymatically-active protein toxins that either directly induce host cell DNA damage or interfere with essential host cell signaling pathways involved in cell proliferation, apoptosis, and inflammation. This review is focused on those toxins that, by mimicking carcinogens and cancer promoters, could represent a paradigm for bacterially induced carcinogenesis. Full article
(This article belongs to the Special Issue Bacterial Protein Toxins: Enemies within or Unexpected Friends 2.0)
Show Figures

Figure 1

16 pages, 3813 KiB  
Article
The Bacterial Toxin CNF1 Protects Human Neuroblastoma SH-SY5Y Cells against 6-Hydroxydopamine-Induced Cell Damage: The Hypothesis of CNF1-Promoted Autophagy as an Antioxidant Strategy
by Sara Travaglione, Stefano Loizzo, Rosa Vona, Giulia Ballan, Roberto Rivabene, Danila Giordani, Marco Guidotti, Maria Luisa Dupuis, Zaira Maroccia, Monica Baiula, Roberto Rimondini, Gabriele Campana and Carla Fiorentini
Int. J. Mol. Sci. 2020, 21(9), 3390; https://doi.org/10.3390/ijms21093390 - 11 May 2020
Cited by 5 | Viewed by 4376
Abstract
Several chronic neuroinflammatory diseases, including Parkinson’s disease (PD), have the so-called ‘redox imbalance’ in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative [...] Read more.
Several chronic neuroinflammatory diseases, including Parkinson’s disease (PD), have the so-called ‘redox imbalance’ in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition. Herein, we used SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), a neurotoxin broadly employed to generate experimental models of PD. Cells were pre-treated with the Rho-modulating Escherichia coli cytotoxic necrotizing factor 1 (CNF1), before the addition of 6-OHDA. Then, cell viability, mitochondrial morphology and dynamics, redox profile as well as autophagic markers expression were assessed. We found that CNF1 preserves cell viability and counteracts oxidative stress induced by 6-OHDA. These effects are accompanied by modulation of the mitochondrial network and an increase in macroautophagic markers. Our results confirm the Rho GTPases as suitable pharmacological targets to counteract neuroinflammatory diseases and evidence the potentiality of CNF1, whose beneficial effects on pathological animal models have been already proven to act against oxidative stress through an autophagic strategy. Full article
(This article belongs to the Special Issue Bacterial Protein Toxins: Enemies within or Unexpected Friends 2.0)
Show Figures

Figure 1

14 pages, 2668 KiB  
Article
Cnf1 Variants Endowed with the Ability to Cross the Blood–Brain Barrier: A New Potential Therapeutic Strategy for Glioblastoma
by Andrea Colarusso, Zaira Maroccia, Ermenegilda Parrilli, Elena Angela Pia Germinario, Andrea Fortuna, Stefano Loizzo, Laura Ricceri, Maria Luisa Tutino, Carla Fiorentini and Alessia Fabbri
Toxins 2020, 12(5), 291; https://doi.org/10.3390/toxins12050291 - 4 May 2020
Cited by 8 | Viewed by 3179
Abstract
Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective [...] Read more.
Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective as an anti-neoplastic agent in a mouse model of glioma, reducing the tumor volume, increasing survival, and maintaining the functional properties of peritumoral neurons. However, being unable to cross the blood–brain barrier (BBB), CNF1 requires injection directly into the brain, which is a very invasive administration route. Thus, to overcome this pitfall, we designed a CNF1 variant characterized by the presence of an N-terminal BBB-crossing tag. The variant was produced and we verified whether its activity was comparable to that of wild-type CNF1 in GBM cells. We investigated the signaling pathways engaged in the cell response to CNF1 variants to provide preliminary data to the subsequent studies in experimental animals. CNF1 may represent a novel avenue for GBM therapy, particularly because, besides blocking tumor growth, it also preserves the healthy surrounding tissue, maintaining its architecture and functionality. This renders CNF1 the most interesting candidate for the treatment of brain tumors, among other potentially effective bacterial toxins. Full article
(This article belongs to the Special Issue Toxins and Cancer Therapy)
Show Figures

Figure 1

10 pages, 1285 KiB  
Communication
The Bacterial Protein CNF1 as a Potential Therapeutic Strategy against Mitochondrial Diseases: A Pilot Study
by Alessia Fabbri, Sara Travaglione, Zaira Maroccia, Marco Guidotti, Ciro Leonardo Pierri, Guido Primiano, Serenella Servidei, Stefano Loizzo and Carla Fiorentini
Int. J. Mol. Sci. 2018, 19(7), 1825; https://doi.org/10.3390/ijms19071825 - 21 Jun 2018
Cited by 15 | Viewed by 3726
Abstract
The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In this [...] Read more.
The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In this brief communication, we show explorative results on the toxin’s effect on fibroblasts derived from a patient affected by myoclonic epilepsy with ragged-red fibers (MERRF) that carries a mutation in the m.8344A>G gene of mitochondrial DNA. We found that, in the patient’s cells, besides rescuing the wild-type-like mitochondrial morphology, CNF1 administration is able to trigger a significant increase in cellular content of ATP and of the mitochondrial outer membrane marker Tom20. These results were accompanied by a profound F-actin reorganization in MERRF fibroblasts, which is a typical CNF1-induced effect on cell cytoskeleton. These results point at a possible role of the actin organization in preventing or limiting the cell damage due to mitochondrial impairment and at CNF1 treatment as a possible novel strategy against mitochondrial diseases still without cure. Full article
(This article belongs to the Special Issue Bacterial Protein Toxins: Enemies within or Unexpected Friends)
Show Figures

Figure 1

Back to TopTop