Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Violetta V. Grechkina

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2196 KiB  
Review
MicroRNAs as Epigenetic Biomarkers of Pathogenetic Mechanisms of the Metabolic Syndrome Induced by Antiseizure Medications: Systematic Review
by Natalia A. Shnayder, Nikolai A. Pekarets, Natalia I. Pekarets, Diana V. Dmitrenko, Violetta V. Grechkina, Marina M. Petrova, Mustafa Al-Zamil and Regina F. Nasyrova
J. Clin. Med. 2025, 14(7), 2432; https://doi.org/10.3390/jcm14072432 - 2 Apr 2025
Viewed by 657
Abstract
Antiseizure medication (ASM) induced metabolic syndrome (AIMetS) is a common adverse drug reaction (ADR) of pharmacotherapy for epilepsy and psychiatric disorders. However, the sensitivity and specificity of blood biomarkers may be insufficient due to the influence of combined pathology, concomitant diseases, and the [...] Read more.
Antiseizure medication (ASM) induced metabolic syndrome (AIMetS) is a common adverse drug reaction (ADR) of pharmacotherapy for epilepsy and psychiatric disorders. However, the sensitivity and specificity of blood biomarkers may be insufficient due to the influence of combined pathology, concomitant diseases, and the peculiarities of the metabolism of ASMs in patients with epilepsy. Methods: The presented results of experimental and clinical studies of microRNAs (miRs) as epigenetic biomarkers of MetS and AIMetS, which were entered into the different databases, were analyzed for the last decade (2014–2024). Results: A systematic review demonstrated that miRs can act as promising epigenetic biomarkers of key AIMetS domains. However, the results of the review demonstrated the variable role of various miRs and their paralogs in the pathogenesis of AIMetS. Therefore, as part of this study, an miRs signature was proposed that allows us to assess the risk of developing and the severity of AIMetS as low risk, medium risk, and high risk. Conclusions: The mechanisms of development and biomarkers of AIMetS are an actual problem of epileptology, which is still far from being resolved. The development of panels (signatures) of epigenetic biomarkers of this widespread ADR may help to increase the safety of pharmacotherapy of epilepsy. However, to increase the sensitivity and specificity of circulating miRs in the blood as biomarkers of AIMetS, it is necessary to conduct “bridge” studies in order to replicate the results of preclinical and clinical studies into real clinical practice. Full article
(This article belongs to the Special Issue New Trends in Diagnosis and Treatment of Epilepsy)
Show Figures

Figure 1

24 pages, 3682 KiB  
Review
Ethnic Aspects of Valproic Acid P-Oxidation
by Natalia A. Shnayder, Violetta V. Grechkina, Vera V. Trefilova, Mikhail Ya. Kissin, Ekaterina A. Narodova, Marina M. Petrova, Mustafa Al-Zamil, Natalia P. Garganeeva and Regina F. Nasyrova
Biomedicines 2024, 12(5), 1036; https://doi.org/10.3390/biomedicines12051036 - 8 May 2024
Cited by 1 | Viewed by 1748
Abstract
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes [...] Read more.
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country). Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

35 pages, 3280 KiB  
Review
Valproate-Induced Metabolic Syndrome
by Natalia A. Shnayder, Violetta V. Grechkina, Vera V. Trefilova, Ilya S. Efremov, Evgenia A. Dontceva, Ekaterina A. Narodova, Marina M. Petrova, Irina A. Soloveva, Liia E. Tepnadze, Polina A. Reznichenko, Mustafa Al-Zamil, Gulnara I. Altynbekova, Anna I. Strelnik and Regina F. Nasyrova
Biomedicines 2023, 11(5), 1499; https://doi.org/10.3390/biomedicines11051499 - 22 May 2023
Cited by 11 | Viewed by 5074
Abstract
Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a [...] Read more.
Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a special role. MetS belongs to a cluster of metabolic conditions such as abdominal obesity, high blood pressure, high blood glucose, high serum triglycerides, and low serum high-density lipoprotein. Valproate-induced MetS (VPA-MetS) is a common ADR that needs an updated multidisciplinary approach to its prevention and diagnosis. In this review, we consider the results of studies of blood (serum and plasma) and the urinary biomarkers of VPA-MetS. These metabolic biomarkers may provide the key to the development of a new multidisciplinary personalized strategy for the prevention and diagnosis of VPA-MetS in patients with neurological diseases, psychiatric disorders, and addiction diseases. Full article
(This article belongs to the Special Issue Advanced Research in Metabolic Syndrome)
Show Figures

Figure 1

39 pages, 3036 KiB  
Review
Therapeutic and Toxic Effects of Valproic Acid Metabolites
by Natalia A. Shnayder, Violetta V. Grechkina, Aiperi K. Khasanova, Elena N. Bochanova, Evgenia A. Dontceva, Marina M. Petrova, Azat R. Asadullin, German A. Shipulin, Kuanysh S. Altynbekov, Mustafa Al-Zamil and Regina F. Nasyrova
Metabolites 2023, 13(1), 134; https://doi.org/10.3390/metabo13010134 - 16 Jan 2023
Cited by 51 | Viewed by 7828
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding [...] Read more.
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington’s disease, Parkinson’s disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient’s pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine). Full article
(This article belongs to the Special Issue Urinary Metabolomic Profiling Analysis and Evaluation)
Show Figures

Figure 1

Back to TopTop