Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Tamás Egedy ORCID = 0000-0003-3929-8425

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 22300 KiB  
Article
Glass Fibre-Reinforced Extrusion 3D-Printed Composites: Experimental and Numerical Study of Mechanical Properties
by András Kámán, László Balogh, Bálint Levente Tarcsay, Miklós Jakab, Armand Meszlényi, Tamás Turcsán and Attila Egedy
Polymers 2024, 16(2), 212; https://doi.org/10.3390/polym16020212 - 11 Jan 2024
Cited by 3 | Viewed by 2060
Abstract
The properties of 3D-printed bodies are an essential part of both the industrial and research sectors, as the manufacturers try to improve them in order to make this now additive manufacturing method more appealing compared to conventional manufacturing methods, like injection moulding. Great [...] Read more.
The properties of 3D-printed bodies are an essential part of both the industrial and research sectors, as the manufacturers try to improve them in order to make this now additive manufacturing method more appealing compared to conventional manufacturing methods, like injection moulding. Great achievements were accomplished in both 3D printing materials and machines that made 3D printing a viable way to produce parts in recent years. However, in terms of printing parameters, there is still much room for advancements. This paper discusses four of the 3D printing parameters that affect the properties of the final products made by chopped glass fibre-filled nylon filaments; these parameters are the printing temperature, nozzle diameter, layer height, and infill orientation. Furthermore, a polynomial function was fitted to the measured data points, which made it possible to calculate the tensile strength, flexural strength, and Young’s modulus of the 3D-printed samples based on their printing parameters. A Pearson correlation analysis was also carried out to determine the impact of each parameter on all three mechanical properties studied. Both the infill orientation and printing temperature had a significant effect on both strengths and Young’s modulus, while the effect of nozzle diameters and layer heights were dependent on the infill orientation used. Also, a model with excellent performance was established to predict the three mechanical properties of the samples based on the four major parameters used. As expected from a fibre-reinforced material, the infill orientation had the most significant effect on the tensile strength, flexural strength, and Young’s modulus. The temperature was also quite significant, while the nozzle diameters and layer height effect were situational. The highest values for the tensile strength, flexural strength, and Young’s modulus were 72 MPa, 78.63 MPa, and 4243 MPa, respectively, which are around the same values the manufacturer states. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 5103 KiB  
Article
The Role of Water and Weathering Processes in Landslides in Hungarian Loess Sediments
by Csilla Király, Dóra Cseresznyés, Norbert Magyar, István Gábor Hatvani, Tamás Egedy, Zsuzsanna Szabó-Krausz, Beatrix Udvardi, Gergely Jakab, György Varga and Zoltán Szalai
Hydrology 2023, 10(4), 81; https://doi.org/10.3390/hydrology10040081 - 1 Apr 2023
Cited by 1 | Viewed by 2409
Abstract
Loess-paleosol bluffs can be unstable, but in the course of urbanization, houses may be built in such locations to take advantage of the view. One factor affecting the stability of such bluffs is water, the role of which in mass movements is well [...] Read more.
Loess-paleosol bluffs can be unstable, but in the course of urbanization, houses may be built in such locations to take advantage of the view. One factor affecting the stability of such bluffs is water, the role of which in mass movements is well established. In this study, the connection of mass movements to meteorological conditions, such as rainfall and subsequent water level changes, was researched using new statistical methods. The periodicity of the water level of the Danube was analyzed using wavelet spectrum analyses, while changepoint analysis was used to determine variations in the quantity of precipitation. These results were compared to the chronology of six mass movements in Kulcs, Hungary. This study also focused on the changes in geochemical properties of loess in different weather conditions (dry periods, wet periods, and flooding). The results showed that only two mass movements were connected to hydrological conditions, and in the other case human activity and geochemical changes may have been factors. The results of geochemical models created using PHREEQC showed calcite and kaolinite precipitation, and albite and dolomite dissolution as the main mineral changes over the course of a year. Albite was found to dissolve only in wet periods, and kaolinite precipitation was significant during flood periods. Full article
Show Figures

Figure 1

16 pages, 3846 KiB  
Article
CFD Modeling of Spatial Inhomogeneities in a Vegetable Oil Carbonation Reactor
by Attila Egedy, Alex Kummer, Sébastien Leveneur, Tamás Varga and Tibor Chován
Processes 2020, 8(11), 1356; https://doi.org/10.3390/pr8111356 - 27 Oct 2020
Cited by 3 | Viewed by 2013
Abstract
Fossil materials are widely used raw materials in polymerization processes; hence, in many cases, the primary goal of green and sustainable technologies is to replace them with renewables. An exciting and promising technology from this aspect is the isocyanate-free polyurethane production using vegetable [...] Read more.
Fossil materials are widely used raw materials in polymerization processes; hence, in many cases, the primary goal of green and sustainable technologies is to replace them with renewables. An exciting and promising technology from this aspect is the isocyanate-free polyurethane production using vegetable oil as a raw material. Functional compounds can be formed by the epoxidation of vegetable oils in three reaction steps: epoxidation, carbonation, and aminolysis. In the case of vegetable oil carbonation, the material properties vary strongly, with the composition affecting the solubility of CO2 in the reaction mixture. Many attempts have been made to model these interactions, but they generally do not account for the changes in the material properties in terms of spatial coordinates. A 2D CFD model based on the combination of the k-ε turbulence model and component mass balances considering the spatial inhomogeneities on the performance of the reactor was created. After the evaluation of the mesh independence study, the simulator was used to calculate the carbonation reaction in a transient analysis with spatial coordinate-dependent density and viscosity changes. The model parameters (height-dependent mass transfer parameters and boundary flux parameters) were identified based on one physical experiment, and a set of 15 experiments were used for model validation. With the validated model, the optimal operating temperature, pressure, and catalyst concentration was proposed. Full article
(This article belongs to the Special Issue Thermal Safety of Chemical Processes)
Show Figures

Figure 1

Back to TopTop