Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Sylwia Ptasinska ORCID = 0000-0002-7550-8189

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2222 KiB  
Article
Exploring pH Dynamics in Amino Acid Solutions Under Low-Temperature Plasma Exposure
by Cecilia Julieta Garcia Villavicencio, Beatriz de Campos Silva, Anesu Matara and Sylwia Ptasinska
Molecules 2024, 29(24), 5889; https://doi.org/10.3390/molecules29245889 - 13 Dec 2024
Cited by 1 | Viewed by 1547
Abstract
Low-temperature plasma (LTP) offers a promising alternative for cancer therapy, as it targets malignant cells selectively while minimizing damage to healthy tissues. Upon interaction with an aqueous solution, LTP generates reactive oxygen and nitrogen species and thereby influences the solution’s pH, which is [...] Read more.
Low-temperature plasma (LTP) offers a promising alternative for cancer therapy, as it targets malignant cells selectively while minimizing damage to healthy tissues. Upon interaction with an aqueous solution, LTP generates reactive oxygen and nitrogen species and thereby influences the solution’s pH, which is a crucial factor in cancer proliferation and response to treatment. This study investigated the effects of LTP on the pH of aqueous solutions, with a focus on the effect of LTP parameters such as voltage, frequency, and irradiation time. In addition, it explored the influence of solution composition, specifically the presence of the amino acids, glycine and serine, on pH changes; these amino acids are known to play significant roles in cancer proliferation. Our results indicated that LTP induces acidification in deionized water, in which the extent of acidification increased proportionally with plasma parameters. In glycine-containing solutions, pH changes were concentration-dependent, whereas serine-containing solutions maintained a constant pH across all tested concentrations. To investigate potential changes to the structural properties of glycine and serine exposed to LTP that could be responsible for different pH responses, we analyzed the samples using FTIR spectroscopy. A significant decrease in absorbance was observed for solutions with low concentrations of amino acids, suggesting their degradation. Full article
Show Figures

Figure 1

12 pages, 1593 KiB  
Review
A Missing Puzzle in Dissociative Electron Attachment to Biomolecules: The Detection of Radicals
by Sylwia Ptasinska
Atoms 2021, 9(4), 77; https://doi.org/10.3390/atoms9040077 - 7 Oct 2021
Cited by 11 | Viewed by 3845
Abstract
Ionizing radiation releases a flood of low-energy electrons that often causes the fragmentation of the molecular species it encounters. Special attention has been paid to the electrons’ contribution to DNA damage via the dissociative electron attachment (DEA) process. Although numerous research groups worldwide [...] Read more.
Ionizing radiation releases a flood of low-energy electrons that often causes the fragmentation of the molecular species it encounters. Special attention has been paid to the electrons’ contribution to DNA damage via the dissociative electron attachment (DEA) process. Although numerous research groups worldwide have probed these processes in the past, and many significant achievements have been made, some technical challenges have hindered researchers from obtaining a complete picture of DEA. Therefore, this research perspective calls urgently for the implementation of advanced techniques to identify non-charged radicals that form from such a decomposition of gas-phase molecules. Having well-described DEA products offers a promise to benefit society by straddling the boundary between physics, chemistry, and biology, and it brings the tools of atomic and molecular physics to bear on relevant issues of radiation research and medicine. Full article
Show Figures

Figure 1

37 pages, 2959 KiB  
Review
Atmospheric Pressure Plasma Deposition of TiO2: A Review
by Soumya Banerjee, Ek Adhikari, Pitambar Sapkota, Amal Sebastian and Sylwia Ptasinska
Materials 2020, 13(13), 2931; https://doi.org/10.3390/ma13132931 - 30 Jun 2020
Cited by 44 | Viewed by 6419
Abstract
Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar [...] Read more.
Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field. Full article
(This article belongs to the Special Issue Atmospheric Pressure Plasmas in Material Science)
Show Figures

Figure 1

17 pages, 1773 KiB  
Article
Large-Scale Image Analysis for Investigating Spatio-Temporal Changes in Nuclear DNA Damage Caused by Nitrogen Atmospheric Pressure Plasma Jets
by Xu Han, James Kapaldo, Yueying Liu, M. Sharon Stack, Elahe Alizadeh and Sylwia Ptasinska
Int. J. Mol. Sci. 2020, 21(11), 4127; https://doi.org/10.3390/ijms21114127 - 10 Jun 2020
Cited by 8 | Viewed by 3516
Abstract
The effective clinical application of atmospheric pressure plasma jet (APPJ) treatments requires a well-founded methodology that can describe the interactions between the plasma jet and a treated sample and the temporal and spatial changes that result from the treatment. In this study, we [...] Read more.
The effective clinical application of atmospheric pressure plasma jet (APPJ) treatments requires a well-founded methodology that can describe the interactions between the plasma jet and a treated sample and the temporal and spatial changes that result from the treatment. In this study, we developed a large-scale image analysis method to identify the cell-cycle stage and quantify damage to nuclear DNA in single cells. The method was then tested and used to examine spatio-temporal distributions of nuclear DNA damage in two cell lines from the same anatomic location, namely the oral cavity, after treatment with a nitrogen APPJ. One cell line was malignant, and the other, nonmalignant. The results showed that DNA damage in cancer cells was maximized at the plasma jet treatment region, where the APPJ directly contacted the sample, and declined radially outward. As incubation continued, DNA damage in cancer cells decreased slightly over the first 4 h before rapidly decreasing by approximately 60% at 8 h post-treatment. In nonmalignant cells, no damage was observed within 1 h after treatment, but damage was detected 2 h after treatment. Notably, the damage was 5-fold less than that detected in irradiated cancer cells. Moreover, examining damage with respect to the cell cycle showed that S phase cells were more susceptible to DNA damage than either G1 or G2 phase cells. The proposed methodology for large-scale image analysis is not limited to APPJ post-treatment applications and can be utilized to evaluate biological samples affected by any type of radiation, and, more so, the cell-cycle classification can be used on any cell type with any nuclear DNA staining. Full article
(This article belongs to the Special Issue Plasma Biology)
Show Figures

Figure 1

46 pages, 3217 KiB  
Review
Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review
by Krishna Priya Arjunan, Virender K. Sharma and Sylwia Ptasinska
Int. J. Mol. Sci. 2015, 16(2), 2971-3016; https://doi.org/10.3390/ijms16022971 - 29 Jan 2015
Cited by 174 | Viewed by 14049
Abstract
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence [...] Read more.
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Degenerative Diseases 2014)
Show Figures

Figure 1

Back to TopTop