Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Sonia Lanzalaco

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 7742 KiB  
Review
Polymers and Plastics Modified Electrodes for Biosensors: A Review
by Sonia Lanzalaco and Brenda G. Molina
Molecules 2020, 25(10), 2446; https://doi.org/10.3390/molecules25102446 - 24 May 2020
Cited by 32 | Viewed by 6155
Abstract
Polymer materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. The present study reviews the field of electrochemical biosensors fabricated on modified plastics and polymers, focusing the attention, in the [...] Read more.
Polymer materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. The present study reviews the field of electrochemical biosensors fabricated on modified plastics and polymers, focusing the attention, in the first part, on modified conducting polymers to improve sensitivity, selectivity, biocompatibility and mechanical properties, whereas the second part is dedicated to modified “environmentally friendly” polymers to improve the electrical properties. These ecofriendly polymers are divided into three main classes: bioplastics made from natural sources, biodegradable plastics made from traditional petrochemicals and eco/recycled plastics, which are made from recycled plastic materials rather than from raw petrochemicals. Finally, flexible and wearable lab-on-a-chip (LOC) biosensing devices, based on plastic supports, are also discussed. This review is timely due to the significant advances achieved over the last few years in the area of electrochemical biosensors based on modified polymers and aims to direct the readers to emerging trends in this field. Full article
(This article belongs to the Special Issue Polymer Biosensor for Electrochemical Detection)
Show Figures

Graphical abstract

31 pages, 16628 KiB  
Review
Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications
by Sonia Lanzalaco and Elaine Armelin
Gels 2017, 3(4), 36; https://doi.org/10.3390/gels3040036 - 4 Oct 2017
Cited by 351 | Viewed by 23267
Abstract
The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the [...] Read more.
The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the last decade—especially in the biomedical field. Therefore, PNIPAAm-based hydrogels are extensively investigated for applications on the controlled delivery of active molecules, in self-healing materials, tissue engineering, regenerative medicine, or in the smart encapsulation of cells. The most promising polymers for biodegradability enhancement of PNIPAAm hydrogels are probably poly(ethylene glycol) (PEG) and/or poly(ε-caprolactone) (PCL), whereas the biocompatibility is mostly achieved with biopolymers. Ultimately, advances in three-dimensional bioprinting technology would contribute to the design of new devices and medical tools with thermal stimuli response needs, fabricated with PNIPAAm hydrogels. Full article
(This article belongs to the Special Issue Organogels for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop