Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Shankar Karuppannan ORCID = 0000-0001-5014-7885

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4870 KiB  
Article
Estimating Groundwater Flow Velocity in Shallow Volcanic Aquifers of the Ethiopian Highlands Using a Geospatial Technique
by Hassen Shube, Seifu Kebede, Tilahun Azagegn, Dessie Nedaw, Muhammed Haji and Shankar Karuppannan
Sustainability 2023, 15(19), 14490; https://doi.org/10.3390/su151914490 - 5 Oct 2023
Cited by 7 | Viewed by 2957
Abstract
The shallow volcanic aquifer is the major rural water supply source in the Ethiopian highlands. A significant number of hand pump wells in these aquifers experience a rapid decline in yield and poor performance within a short period of time after construction. Hence, [...] Read more.
The shallow volcanic aquifer is the major rural water supply source in the Ethiopian highlands. A significant number of hand pump wells in these aquifers experience a rapid decline in yield and poor performance within a short period of time after construction. Hence, reliable estimation of groundwater flow velocity is important to understand groundwater flow dynamics, aquifer responses to stresses and to optimize the sustainable management of groundwater resources. Here, we propose the geospatial technique using four essential input raster maps (groundwater elevation head, transmissivity, effective porosity and saturated thickness) to investigate groundwater flow velocity magnitude and direction in the shallow volcanic aquifers of the Ethiopian highlands. The results indicated that the high groundwater flow velocity in the Mecha site, ranging up to 47 m/day, was observed in the fractured scoraceous basalts. The Ejere site showed groundwater flow velocity not exceeding 7 m/day in the fractured basaltic aquifer and alluvial deposits. In the Sodo site, the groundwater flow velocity was observed to exceed 22 m/day in the fractured basaltic and rhyolitic aquifers affected by geological structures. The Abeshege site has a higher groundwater flow velocity of up to 195 m/day in the highly weathered and fractured basaltic aquifer. In all study sites, aquifers with less fractured basalt, trachyte, rhyolite, welded pyroclastic, and lacustrine deposits exhibited lower groundwater flow velocity values. The groundwater flow velocity directions in all study sites are similar to the groundwater elevation head, which signifies the local and regional groundwater flow directions. This work can be helpful in shallow groundwater resource development and management for rural water supply. Full article
Show Figures

Figure 1

20 pages, 7290 KiB  
Article
Quality and Health Risk Assessment of Groundwater for Drinking and Irrigation Purpose in Semi-Arid Region of India Using Entropy Water Quality and Statistical Techniques
by Balamurugan Panneerselvam, Nagavinothini Ravichandran, Shunmuga Priya Kaliyappan, Shankar Karuppannan and Butsawan Bidorn
Water 2023, 15(3), 601; https://doi.org/10.3390/w15030601 - 3 Feb 2023
Cited by 41 | Viewed by 6352
Abstract
The continuous intake of contaminated drinking water causes serious issues for human health. In order to estimate the suitability of groundwater for drinking and irrigation, and also conduct human risk assessments of various groups of people, a total of 43 sample locations in [...] Read more.
The continuous intake of contaminated drinking water causes serious issues for human health. In order to estimate the suitability of groundwater for drinking and irrigation, and also conduct human risk assessments of various groups of people, a total of 43 sample locations in the semi-arid southern part of India were selected based on population density, and we collected and analyzed groundwater from the locations for major anions and cations. The present study’s novelty is integrating hydrochemical analysis with the entropy water quality index (EWQI), nitrate pollution index (NPI) and human health risk assessment. The results of the EWQI revealed that 44.19% of the sample locations need to be treated before consumption. About 37.20% of the study region has a high concentration of nitrate in the groundwater. NPI revealed that 41.86% of the samples had moderate or significant pollution levels. The non-carcinogenic risk evaluation showed that 6–12-year-old children are at a higher risk than teenagers, adults and elderly people in the study area. The natural sources of nitrate and other contamination of groundwater are rock–water interaction, weathering of rock, dissolution of carbonate minerals and evaporation processes, and the anthropogenic sources are the decomposition of organic substances in dumping yards, uncovered septic tanks and human and animal waste. The results suggest taking mitigation measures to reduce the contamination and improve the sustainable planning of groundwater management. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 4856 KiB  
Article
Multivariate Urban Air Quality Assessment of Indoor and Outdoor Environments at Chennai Metropolis in South India
by Manikanda Bharath Karuppasamy, Usha Natesan, Shankar Karuppannan, Lakshmi Narasimhan Chandrasekaran, Sajjad Hussain, Hussein Almohamad, Ahmed Abdullah Al Dughairi, Motrih Al-Mutiry, Ibrahim Alkayyadi and Hazem Ghassan Abdo
Atmosphere 2022, 13(10), 1627; https://doi.org/10.3390/atmos13101627 - 6 Oct 2022
Cited by 20 | Viewed by 3141
Abstract
The present study examines indoor and outdoor environmental particulate matter and gaseous pollutants in order to evaluate the urban air quality, the sources and pathways of pollutants, and its impact on Chennai megacity, South India. A total number of 25 air conditioner filter [...] Read more.
The present study examines indoor and outdoor environmental particulate matter and gaseous pollutants in order to evaluate the urban air quality, the sources and pathways of pollutants, and its impact on Chennai megacity, South India. A total number of 25 air conditioner filter particulate matter samples collected from residential buildings, schools, colleges, commercial shopping malls, and buildings near urban highways were studied for indoor air quality. Similarly, outdoor air quality assessments have been done in various parts of the Chennai metropolis, including the Manali-Industrial area, the Velachery-Residential site, and the Alandur Bus Depot, as well as collected air quality data sets from the Central Pollution Control Board at continuous ambient air quality monitoring stations. The suspended atmospheric particles where the highest concentration (47%) occurred were mostly located in the roadside environments followed by commercial areas (42%), which indicates the increase in air pollution in the roadside areas. Further, environmental magnetism and ecological risk indices were studied from the collected data set. The study predicts that the air pollutants were predominantly from anthropogenic sources, such as vehicle emissions, effluents from power plants, abrasion of tires, steelworks, burning of fossil fuels and construction materials, etc. As a result, the current study suggests 68% of indoor pollutants were from the anthropogenic input, 18% from the pedogenic origin, and 14% from high heavy metal pollution at the sampling sites. This indicates that raising the ventilation rate via mechanical components significantly enhances the indoor air quality. These findings might be valuable in improving urban air quality, reducing traffic-related pollutants, and improving environmental quality. Full article
Show Figures

Figure 1

17 pages, 1468 KiB  
Article
Evaluation of Vulnerability Status of the Infection Risk to COVID-19 Using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): A Case Study of Addis Ababa City, Ethiopia
by Hizkel Asfaw, Shankar Karuppannan, Tilahun Erduno, Hussein Almohamad, Ahmed Abdullah Al Dughairi, Motrih Al-Mutiry and Hazem Ghassan Abdo
Int. J. Environ. Res. Public Health 2022, 19(13), 7811; https://doi.org/10.3390/ijerph19137811 - 25 Jun 2022
Cited by 17 | Viewed by 4183
Abstract
COVID-19 is a disease caused by a new coronavirus called SARS-CoV-2 and is an accidental global public health threat. Because of this, WHO declared the COVID-19 outbreak a pandemic. The pandemic is spreading unprecedently in Addis Ababa, which results in extraordinary logistical and [...] Read more.
COVID-19 is a disease caused by a new coronavirus called SARS-CoV-2 and is an accidental global public health threat. Because of this, WHO declared the COVID-19 outbreak a pandemic. The pandemic is spreading unprecedently in Addis Ababa, which results in extraordinary logistical and management challenges in response to the novel coronavirus in the city. Thus, management strategies and resource allocation need to be vulnerability-oriented. Though various studies have been carried out on COVID-19, only a few studies have been conducted on vulnerability from a geospatial/location-based perspective but at a wider spatial resolution. This puts the results of those studies under question while their findings are projected to the finer spatial resolution. To overcome such problems, the integration of Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA) has been developed as a framework to evaluate and map the susceptibility status of the infection risk to COVID-19. To achieve the objective of the study, data like land use, population density, and distance from roads, hospitals, bus stations, the bank, markets, COVID-19 cases, health care units, and government offices are used. The weighted overlay method was used; to evaluate and map the susceptibility status of the infection risk to COVID-19. The result revealed that out of the total study area, 32.62% (169.91 km2) falls under the low vulnerable category (1), and the area covering 40.9% (213.04 km2) under the moderate vulnerable class (2) for infection risk of COVID-19. The highly vulnerable category (3) covers an area of 25.31% (132.85 km2), and the remaining 1.17% (6.12 km2) is under an extremely high vulnerable class (4). Thus, these priority areas could address pandemic control mechanisms like disinfection regularly. Health sector professionals, local authorities, the scientific community, and the general public will benefit from the study as a tool to better understand pandemic transmission centers and identify areas where more protective measures and response actions are needed at a finer spatial resolution. Full article
(This article belongs to the Special Issue Risk Assessment for COVID-19)
Show Figures

Figure 1

19 pages, 3927 KiB  
Article
Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data
by Sajjad Hussain, Linlin Lu, Muhammad Mubeen, Wajid Nasim, Shankar Karuppannan, Shah Fahad, Aqil Tariq, B. G. Mousa, Faisal Mumtaz and Muhammad Aslam
Land 2022, 11(5), 595; https://doi.org/10.3390/land11050595 - 19 Apr 2022
Cited by 108 | Viewed by 8236
Abstract
Climate change is likely to have serious social, economic, and environmental impacts on farmers whose subsistence depends on nature. Land Use Land Cover (LULC) changes were examined as a significant tool for assessing changes at diverse temporal and spatial scales. Normalized Difference Vegetation [...] Read more.
Climate change is likely to have serious social, economic, and environmental impacts on farmers whose subsistence depends on nature. Land Use Land Cover (LULC) changes were examined as a significant tool for assessing changes at diverse temporal and spatial scales. Normalized Difference Vegetation Index (NDVI) has the potential ability to signify the vegetation structures of various eco-regions and provide valuable information as a remote sensing tool in studying vegetation phenology cycles. In this study, we used remote sensing and Geographical Information System (GIS) techniques with Maximum Likelihood Classification (MLC) to identify the LULC changes for 40 years in the Sahiwal District. Later, we conducted 120 questionnaires administered to local farmers which were used to correlate climate changes with NDVI. The LULC maps were prepared using MLC and training sites for the years 1981, 2001, and 2021. Regression analysis (R2) was performed to identify the relationship between temperature and vegetation cover (NDVI) in the study area. Results indicate that the build-up area was increased from 7203.76 ha (2.25%) to 31,081.3 ha (9.70%), while the vegetation area decreased by 14,427.1 ha (4.5%) from 1981 to 2021 in Sahiwal District. The mean NDVI values showed that overall NDVI values decreased from 0.24 to 0.20 from 1981 to 2021. Almost 78% of farmers stated that the climate has been changing during the last few years, 72% of farmers stated that climate change had affected agriculture, and 53% of farmers thought that rainfall intensity had also decreased. The R2 tendency showed that temperature and NDVI were negatively connected to each other. This study will integrate and apply the best and most suitable methods, tools, and approaches for equitable local adaptation and governance of agricultural systems in changing climate conditions. Therefore, this research outcome will also meaningfully help policymakers and urban planners for sustainable LULC management and strategies at the local level. Full article
(This article belongs to the Topic Climate Change and Environmental Sustainability)
Show Figures

Figure 1

Back to TopTop