Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Sang W. Han

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9552 KiB  
Article
Benefits of Maternal Choline Supplementation on Aged Basal Forebrain Cholinergic Neurons (BFCNs) in a Mouse Model of Down Syndrome and Alzheimer’s Disease
by Melissa J. Alldred, Harshitha Pidikiti, Kyrillos W. Ibrahim, Sang Han Lee, Adriana Heguy, Gabriela Chiosis, Elliott J. Mufson, Grace E. Stutzmann and Stephen D. Ginsberg
Biomolecules 2025, 15(8), 1131; https://doi.org/10.3390/biom15081131 - 5 Aug 2025
Abstract
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial [...] Read more.
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial effects on behavior and gene expression in neurodevelopmental and neurodegenerative disorders, including trisomic mice. Loss of basal forebrain cholinergic neurons (BFCNs) and other DS/AD relevant hallmarks were observed in a well-established trisomic model (Ts65Dn, Ts). MCS attenuates these endophenotypes with beneficial behavioral effects in trisomic offspring. We postulate MCS ameliorates dysregulated cellular mechanisms within vulnerable BFCNs, with attenuation driven by novel gene expression. Here, choline acetyltransferase immunohistochemical labeling identified BFCNs in the medial septal/ventral diagonal band nuclei of the basal forebrain in Ts and normal disomic (2N) offspring at ~11 months of age from dams exposed to MCS or normal choline during the perinatal period. BFCNs (~500 per mouse) were microisolated and processed for RNA-sequencing. Bioinformatic assessment elucidated differentially expressed genes (DEGs) and pathway alterations in the context of genotype (Ts, 2N) and maternal diet (MCS, normal choline). MCS attenuated select dysregulated DEGs and relevant pathways in aged BFCNs. Trisomic MCS-responsive improvements included pathways such as cognitive impairment and nicotinamide adenine dinucleotide signaling, among others, indicative of increased behavioral and bioenergetic fitness. Although MCS does not eliminate the DS/AD phenotype, early choline delivery provides long-lasting benefits to aged trisomic BFCNs, indicating that MCS prolongs neuronal health in the context of DS/AD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 2357 KiB  
Article
Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles
by Patrick D. Mathews, Gabriella S. Gama, Hector M. Megiati, Rafael R. M. Madrid, Bianca B. M. Garcia, Sang W. Han, Rosangela Itri and Omar Mertins
Pharmaceutics 2024, 16(1), 141; https://doi.org/10.3390/pharmaceutics16010141 - 20 Jan 2024
Cited by 4 | Viewed by 2386
Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their [...] Read more.
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan–catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability. Full article
Show Figures

Figure 1

16 pages, 5093 KiB  
Article
Glucose Deprivation Induces Cancer Cell Death through Failure of ROS Regulation
by Mingyu Kang, Joon H. Kang, In A. Sim, Do Y. Seong, Suji Han, Hyonchol Jang, Ho Lee, Sang W. Kang and Soo-Youl Kim
Int. J. Mol. Sci. 2023, 24(15), 11969; https://doi.org/10.3390/ijms241511969 - 26 Jul 2023
Cited by 14 | Viewed by 7696
Abstract
In previous work, we showed that cancer cells do not depend on glycolysis for ATP production, but they do on fatty acid oxidation. However, we found some cancer cells induced cell death after glucose deprivation along with a decrease of ATP production. We [...] Read more.
In previous work, we showed that cancer cells do not depend on glycolysis for ATP production, but they do on fatty acid oxidation. However, we found some cancer cells induced cell death after glucose deprivation along with a decrease of ATP production. We investigated the different response of glucose deprivation with two types of cancer cells including glucose insensitive cancer cells (GIC) which do not change ATP levels, and glucose sensitive cancer cells (GSC) which decrease ATP production in 24 h. Glucose deprivation-induced cell death in GSC by more than twofold after 12 h and by up to tenfold after 24 h accompanied by decreased ATP production to compare to the control (cultured in glucose). Glucose deprivation decreased the levels of metabolic intermediates of the pentose phosphate pathway (PPP) and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) in both GSC and GIC. However, glucose deprivation increased reactive oxygen species (ROS) only in GSC, suggesting that GIC have a higher tolerance for decreased NADPH than GSC. The twofold higher ratio of reduced/oxidized glutathione (GSH/GSSG) in GIS than in GSC correlates closely with the twofold lower ROS levels under glucose starvation conditions. Treatment with N-acetylcysteine (NAC) as a precursor to the biologic antioxidant glutathione restored ATP production by 70% and reversed cell death caused by glucose deprivation in GSC. The present findings suggest that glucose deprivation-induced cancer cell death is not caused by decreased ATP levels, but rather triggered by a failure of ROS regulation by the antioxidant system. Conclusion is clear that glucose deprivation-induced cell death is independent from ATP depletion-induced cell death. Full article
(This article belongs to the Special Issue New Players in the Research of Oxidative Stress and Cancer)
Show Figures

Figure 1

31 pages, 4598 KiB  
Review
Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application
by Bruna G. Carvalho, Bruno T. Ceccato, Mariano Michelon, Sang W. Han and Lucimara G. de la Torre
Pharmaceutics 2022, 14(1), 141; https://doi.org/10.3390/pharmaceutics14010141 - 7 Jan 2022
Cited by 51 | Viewed by 12030
Abstract
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows [...] Read more.
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein. Full article
Show Figures

Figure 1

19 pages, 4686 KiB  
Article
Nuclear HKII–P-p53 (Ser15) Interaction is a Prognostic Biomarker for Chemoresponsiveness and Glycolytic Regulation in Epithelial Ovarian Cancer
by Chae Young Han, David A. Patten, Se Ik Kim, Jung Jin Lim, David W. Chan, Michelle K. Y. Siu, Youngjin Han, Euridice Carmona, Robin J. Parks, Cheol Lee, Li-Jun Di, Zhen Lu, Karen K. L. Chan, Ja-Lok Ku, Elizabeth A. Macdonald, Barbara C. Vanderhyden, Anne-Marie Mes-Masson, Hextan Y. S. Ngan, Annie N. Y. Cheung, Yong Sang Song, Robert C. Bast, Mary-Ellen Harper and Benjamin K. Tsangadd Show full author list remove Hide full author list
Cancers 2021, 13(14), 3399; https://doi.org/10.3390/cancers13143399 - 7 Jul 2021
Cited by 10 | Viewed by 4212
Abstract
In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we [...] Read more.
In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII–P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII–P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

Back to TopTop