Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Sébastien Schmerber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3424 KiB  
Article
Posterior Semicircular Canal Dehiscence with Vestibulo-Ocular Reflex Reduction for the Affected Canal at the Video-Head Impulse Test: Considerations to Pathomechanisms
by Andrea Castellucci, Georges Dumas, Sawsan M. Abuzaid, Enrico Armato, Salvatore Martellucci, Pasquale Malara, Mohamad Alfarghal, Rosanna Rita Ruberto, Pasquale Brizzi, Angelo Ghidini, Francesco Comacchio and Sébastien Schmerber
Audiol. Res. 2024, 14(2), 317-332; https://doi.org/10.3390/audiolres14020028 - 24 Mar 2024
Cited by 4 | Viewed by 2387
Abstract
Posterior semicircular canal dehiscence (PSCD) has been demonstrated to result in a third mobile window mechanism (TMWM) in the inner ear similar to superior semicircular canal dehiscence (SSCD). Typical clinical and instrumental features of TMWM, including low-frequency conductive hearing loss (CHL), autophony, pulsatile [...] Read more.
Posterior semicircular canal dehiscence (PSCD) has been demonstrated to result in a third mobile window mechanism (TMWM) in the inner ear similar to superior semicircular canal dehiscence (SSCD). Typical clinical and instrumental features of TMWM, including low-frequency conductive hearing loss (CHL), autophony, pulsatile tinnitus, sound/pressure-induced vertigo and enhanced vestibular-evoked myogenic potentials, have been widely described in cases with PSCD. Nevertheless, video-head impulse test (vHIT) results have been poorly investigated. Here, we present six patients with PSCD presenting with a clinical scenario consistent with a TMWM and an impaired vestibulo-ocular reflex (VOR) for the affected canal on vHIT. In two cases, an additional dehiscence between the facial nerve and the horizontal semicircular canal (HSC) was detected, leading to a concurrent VOR impairment for the HSC. While in SSCD, a VOR gain reduction could be ascribed to a spontaneous “auto-plugging” process due to a dural prolapse into the canal, the same pathomechanism is difficult to conceive in PSCD due to a different anatomical position, making a dural herniation less likely. Alternative putative pathomechanisms are discussed, including an endolymphatic flow dissipation during head impulses as already hypothesized in SSCD. The association of symptoms/signs consistent with TMWM and a reduced VOR gain for the posterior canal might address the diagnosis toward PSCD. Full article
Show Figures

Figure 1

20 pages, 6246 KiB  
Review
Skull Vibration-Induced Nystagmus in Superior Semicircular Canal Dehiscence: A New Insight into Vestibular Exploration—A Review
by Georges Dumas, Ian Curthoys, Andrea Castellucci, Laurent Dumas, Laetitia Peultier-Celli, Enrico Armato, Pasquale Malara, Philippe Perrin and Sébastien Schmerber
Audiol. Res. 2024, 14(1), 96-115; https://doi.org/10.3390/audiolres14010009 - 22 Jan 2024
Cited by 3 | Viewed by 2503
Abstract
The third window syndrome, often associated with the Tullio phenomenon, is currently most often observed in patients with a superior semicircular-canal dehiscence (SCD) but is not specific to this pathology. Clinical and vestibular tests suggestive of this pathology are not always concomitantly observed [...] Read more.
The third window syndrome, often associated with the Tullio phenomenon, is currently most often observed in patients with a superior semicircular-canal dehiscence (SCD) but is not specific to this pathology. Clinical and vestibular tests suggestive of this pathology are not always concomitantly observed and have been recently complemented by the skull-vibration-induced nystagmus test, which constitutes a bone-conducted Tullio phenomenon (BCTP). The aim of this work was to collect from the literature the insights given by this bedside test performed with bone-conducted stimulations in SCD. The PRISMA guidelines were used, and 10 publications were included and analyzed. Skull vibration-induced nystagmus (SVIN), as observed in 55 to 100% of SCD patients, usually signals SCD with greater sensitivity than the air-conducted Tullio phenomenon (ACTP) or the Hennebert sign. The SVIN direction when the test is performed on the vertex location at 100 Hz is most often ipsilaterally beating in 82% of cases for the horizontal and torsional components and down-beating for the vertical component. Vertex stimulations are more efficient than mastoid stimulations at 100 Hz but are equivalent at higher frequencies. SVIN efficiency may depend on stimulus location, order, and duration. In SCD, SVIN frequency sensitivity is extended toward high frequencies, with around 400 Hz being optimal. SVIN direction may depend in 25% on stimulus frequency and in 50% on stimulus location. Mastoid stimulations show frequently diverging results following the side of stimulation. An after-nystagmus observed in 25% of cases can be interpreted in light of recent physiological data showing two modes of activation: (1) cycle-by-cycle phase-locked activation of action potentials in SCC afferents with irregular resting discharge; (2) cupula deflection by fluid streaming caused by the travelling waves of fluid displacement initiated by sound or vibration at the point of the dehiscence. The SVIN direction and intensity may result from these two mechanisms’ competition. This instability explains the SVIN variability following stimulus location and frequency observed in some patients but also discrepancies between investigators. SVIN is a recent useful insight among other bedside examination tests for the diagnosis of SCD in clinical practice. Full article
Show Figures

Figure 1

12 pages, 650 KiB  
Review
Fifty Years of Development of the Skull Vibration-Induced Nystagmus Test
by Solara Sinno, Sébastien Schmerber, Philippe Perrin and Georges Dumas
Audiol. Res. 2022, 12(1), 10-21; https://doi.org/10.3390/audiolres12010002 - 30 Dec 2021
Cited by 2 | Viewed by 3709
Abstract
This review enumerates most of the studies on the Skull Vibration-Induced Nystagmus Test (SVINT) in the past 50 years from different research groups around the world. It is an attempt to demonstrate the evolution of this test and its increased interest around the [...] Read more.
This review enumerates most of the studies on the Skull Vibration-Induced Nystagmus Test (SVINT) in the past 50 years from different research groups around the world. It is an attempt to demonstrate the evolution of this test and its increased interest around the globe. It explores clinical studies and animal studies, both permitting a better understanding of the importance of SVINT and its pathophysiology. Full article
(This article belongs to the Special Issue Skull Vibration-Induced Nystagmus Test)
Show Figures

Figure 1

11 pages, 1472 KiB  
Article
Skull Vibration Induced Nystagmus Test: Correlations with Semicircular Canal and Otolith Asymmetries
by Christol Fabre, Haoyue Tan, Georges Dumas, Ludovic Giraud, Philippe Perrin and Sébastien Schmerber
Audiol. Res. 2021, 11(4), 618-628; https://doi.org/10.3390/audiolres11040056 - 15 Nov 2021
Cited by 6 | Viewed by 3645
Abstract
Background: To establish in patients with peripheral vestibular disorders relations between skull vibration-induced nystagmus (SVIN) different components (horizontal, vertical, torsional) and the results of different structurally related vestibular tests. Methods: SVIN test, canal vestibular test (CVT: caloric test + video head impulse test: [...] Read more.
Background: To establish in patients with peripheral vestibular disorders relations between skull vibration-induced nystagmus (SVIN) different components (horizontal, vertical, torsional) and the results of different structurally related vestibular tests. Methods: SVIN test, canal vestibular test (CVT: caloric test + video head impulse test: VHIT), otolithic vestibular test (OVT: ocular vestibular evoked myogenic potential oVEMP + cervical vestibular evoked myogenic potential cVEMP) performed on the same day in 52 patients with peripheral vestibular diseases (age < 65 years), and 11 control patients were analyzed. Mixed effects logistic regression analysis was performed to assert whether the presence of nystagmus in SVIN (3D analysis) have an association with the presence of peripheral vestibular dysfunction measured by vestibular explorations (CVT or OVT). Results: We obtained different groups: Group-Co (control group), Group-VNT (dizzy patients with no vestibular tests alterations), Group-O (OVT alterations only), Group-C (CVT alterations only), Group-M (mixed alterations). SVIN-SPV horizontal component was significantly higher in Group-M than in the other groups (p = 0.005) and correlated with alterations of lateral-VHIT (p < 0.001), caloric test (p = 0.002) and oVEMP (p = 0.006). SVIN-SPV vertical component was correlated with the anterior-VHIT and oVEMP alterations (p = 0.007; p = 0.017, respectively). SVIN-SPV torsional component was correlated with the anterior-VHIT positivity (p = 0.017). SVIN was the only positive test for 10% of patients (83% of Group-VNT). Conclusion: SVIN-SPV analysis in dizzy patients shows significant correlation to both CVT and OVT. SVIN horizontal component is mainly relevant to both vestibular tests exploring lateral canal and utricle responses. SVIN-SPV is significantly higher in patients with combined canal and otolith lesions. In some patients with dizziness, SVIN may be the only positive test. Full article
(This article belongs to the Special Issue Skull Vibration-Induced Nystagmus Test)
Show Figures

Figure 1

12 pages, 1989 KiB  
Article
Skull Vibration-Induced Nystagmus Test in a Human Model of Horizontal Canal Plugging
by Georges Dumas, Christol Fabre, Anne Charpiot, Lea Fath, Hella Chaney-Vuong, Philippe Perrin and Sébastien Schmerber
Audiol. Res. 2021, 11(3), 301-312; https://doi.org/10.3390/audiolres11030028 - 24 Jun 2021
Cited by 4 | Viewed by 3146
Abstract
Background/Aim: the aim of this study was to assess the skull vibration-induced nystagmus test (SVINT) results and vestibular residual function after horizontal semicircular canal (HSCC) plugging. Methods: In this retrospective chart review performed in a tertiary referral center, 11 patients who underwent unilateral [...] Read more.
Background/Aim: the aim of this study was to assess the skull vibration-induced nystagmus test (SVINT) results and vestibular residual function after horizontal semicircular canal (HSCC) plugging. Methods: In this retrospective chart review performed in a tertiary referral center, 11 patients who underwent unilateral horizontal semicircular canal plugging (uHSCCP) for disabling Menière’s disease (MD) were included. The skull vibration-induced nystagmus (SVIN) slow-phase velocity (SPV) was compared with the results of the caloric test (CaT), video head impulse test (VHIT), and cervical vestibular-evoked myogenic potentials (cVEMP) performed on the same day. Results: Overall, 10 patients had a strong SVIN beating toward the intact side (Horizontal SVIN-SPV: 8.8°/s ± 5.6°/s), 10 had a significant or severe ipsilateral CaT hypofunction, 10 had an ipsilateral horizontal VHIT gain impairment, and 3 had altered cVEMP on the operated side. Five had sensorineural hearing worsening. SVIN-positive results were correlated with CaT and horizontal VHIT (HVHIT) results (p < 0.05) but not with cVEMP. SVIN-SPV was correlated with CaT hypofunction in % (p < 0.05). Comparison of pre- and postoperative CaT % hypofunction showed a significant worsening (p = 0.028). Conclusion: SVINT results in a human model of horizontal canal plugging are well correlated with vestibular tests exploring horizontal canal function, but not with cVEMP. SVINT always showed a strong lesional nystagmus beating away from the lesion side. SVIN acts as a good marker of HSCC function. This surgical technique showed invasiveness regarding horizontal canal vestibular function. Full article
(This article belongs to the Special Issue Skull Vibration-Induced Nystagmus Test)
Show Figures

Figure 1

Back to TopTop