Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Raymond H. Thomas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 874 KiB  
Article
Enrichment of Whole-Grain Breads with Food-Grade Extracted Apple Pomace Bioactives Enhanced Their Anti-Inflammatory, Antithrombotic and Anti-Oxidant Functional Properties
by Alexandros Tsoupras, Donal Moran, Katie Shiels, Sushanta Kumar Saha, Ibrahim M. Abu-Reidah, Raymond H. Thomas and Shane Redfern
Antioxidants 2024, 13(2), 225; https://doi.org/10.3390/antiox13020225 - 11 Feb 2024
Cited by 12 | Viewed by 3395
Abstract
Apple pomace (AP) is a bio-waste product of apples that is co-produced as a by-product during apples’ processing for making apple-based products, mainly apple juice, cider and vinegar. AP is a rich source of several bioactives that can be valorized as ingredients for [...] Read more.
Apple pomace (AP) is a bio-waste product of apples that is co-produced as a by-product during apples’ processing for making apple-based products, mainly apple juice, cider and vinegar. AP is a rich source of several bioactives that can be valorized as ingredients for developing novel functional foods, supplements and nutraceuticals. Within the present study, food-grade extracts from AP with different tannin contents were found to contain bioactive polar lipids (PLs), phenolics and carotenoids with strong anti-oxidant, antithrombotic and anti-inflammatory properties. The extract from the low-in-tannins AP showed stronger anti-inflammatory potency in human platelets against the potent thrombo-inflammatory mediator platelet-activating factor (PAF), while it also exhibited considerable anti-platelet effects against the standard platelet agonist, adenosine diphosphate (ADP). The infusion of 0.5–1.0 g of this bioactive AP extract as functional ingredients for whole-grain bread-making resulted in the production of novel bio-functional bread products with stronger anti-oxidant, antithrombotic and anti-inflammatory potency against both PAF and ADP in human platelets, compared to the standard non-infused control breads. Structural analysis by LCMS showed that the PL-bioactives from all these sources (AP and the bio-functional breads) are rich in bioactive unsaturated fatty acids (UFA), especially in the omega-9 oleic acid (OA; 18:1n9), the omega-3 alpha linolenic acid (ALA; 18:n3) and the omega-6 linoleic acid (LA; 18:2n6), which further supports their strong anti-inflammatory and antithrombotic properties. All food-grade extracted AP including that infused with AP-bioactives novel functional breads showed higher hydrophilic, lipophilic and total phenolic content, as well as total carotenoid content, and subsequently stronger antioxidant capacity. These results showed the potential of appropriately valorizing AP-extracts in developing novel bio-functional bakery products, as well as in other health-promoting applications. Nevertheless, more studies are needed to fully elucidate and/or validate the anti-inflammatory, antithrombotic and antioxidant potential of novel bio-functional products across the food and cosmetic sectors when infused with these AP bioactives. Full article
Show Figures

Graphical abstract

8 pages, 2540 KiB  
Article
Hypoxia Dysregulates the Transcription of Myoendothelial Junction Proteins Involved with Nitric Oxide Production in Brain Endothelial Cells
by Gregory Thomas, Kaysie L. Banton, Raymond Garrett, Carlos H. Palacio, David Acuna, Robert Madayag and David Bar-Or
Biomedicines 2024, 12(1), 75; https://doi.org/10.3390/biomedicines12010075 - 28 Dec 2023
Viewed by 1694
Abstract
Myoendothelial junctions (MEJs) are structures that allow chemical signals to be transmitted between endothelial cells (ECs) and vascular smooth muscle cells, which control vascular tone. MEJs contain hemoglobin alpha (Hbα) and endothelial nitric oxide synthase (eNOS) complexes that appear to control the production [...] Read more.
Myoendothelial junctions (MEJs) are structures that allow chemical signals to be transmitted between endothelial cells (ECs) and vascular smooth muscle cells, which control vascular tone. MEJs contain hemoglobin alpha (Hbα) and endothelial nitric oxide synthase (eNOS) complexes that appear to control the production and scavenging of nitric oxide (NO) along with the activity of cytochrome b5 reductase 3 (CYB5R3). The aim of this study was to examine how hypoxia affected the regulation of proteins involved in the production of NO in brain ECs. In brief, human brain microvascular endothelial cells (HBMEC) were exposed to cobalt chloride (CoCl2), a hypoxia mimetic, and a transcriptional analysis was performed using primers for eNOS, CYB5R3, and Hbα2 with ΔΔCt relative gene expression normalized to GAPDH. NO production was also measured after treatment using 4,5-diaminofluorescein diacetate (DAF-DA), a fluorescent NO indicator. When HBMEC were exposed to CoCl2 for 48 h, eNOS and CYB5R3 messenger RNA significantly decreased (up to −17.8 ± 4.30-fold and −10.4 ± 2.8, respectively) while Hbα2 increased to detectable levels. Furthermore, CoCl2 treatment caused a redistribution of peripheral membrane-generated NO production to a perinuclear region. To the best of our knowledge, this is the first time this axis has been studied in brain ECs and these findings imply that hypoxia may cause dysregulation of proteins that regulate NO production in brain MEJs. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

18 pages, 3791 KiB  
Article
Coordinated Regulation of Central Carbon Metabolism in Pyroligneous Acid-Treated Tomato Plants under Aluminum Stress
by Raphael Ofoe, Raymond H. Thomas and Lord Abbey
Metabolites 2023, 13(6), 770; https://doi.org/10.3390/metabo13060770 - 20 Jun 2023
Cited by 5 | Viewed by 2288
Abstract
Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. [...] Read more.
Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., ‘Scotia’) seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin–Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence)
Show Figures

Graphical abstract

20 pages, 791 KiB  
Article
Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate
by Muhammad Faran, Muhammad Nadeem, Charles F. Manful, Lakshman Galagedara, Raymond H. Thomas and Mumtaz Cheema
Agronomy 2023, 13(1), 182; https://doi.org/10.3390/agronomy13010182 - 6 Jan 2023
Cited by 10 | Viewed by 2889
Abstract
Anaerobic liquid dairy digestate is a by-product of dairy waste anaerobic digestion from dairy operations and is associated with environmental risks if not handled properly, particularly nutrient leaching losses, water contaminations, and greenhouse gas emissions. We tested the applications of anerobic digestate (AD) [...] Read more.
Anaerobic liquid dairy digestate is a by-product of dairy waste anaerobic digestion from dairy operations and is associated with environmental risks if not handled properly, particularly nutrient leaching losses, water contaminations, and greenhouse gas emissions. We tested the applications of anerobic digestate (AD) as a biofertilizer and water source in greenhouse vegetable production to integrate food production and industry waste management for sustainable environments. We used a deep water culture system to assess the effects of AD effluent alone, inorganic nutrient solution (NS), and a combination of AD and NS on the growth, yield, and phytonutrient profile and heavy metal contamination assessment of hydroponically produced lettuce. Lettuce produced in AD had a lower leaf area, total chlorophyll content, and fresh biomass; however, it displayed significantly higher chicoric acid (200%), chlorogenic acid (67%), luteolin (800%), quercetin-3-O-β-d-glucuronide (378%), quercetin-3-glucoside (200%), quercetin-3-O-(6″-O-malonyl)-β-D-glucoside (1077%), folate (248%), pantothenic acid (200%), total phenolics (111%), total antioxidants (44%), and soluble sugars (253%) compared to control (inorganic feed). The AD-produced lettuce also showed significantly lower heavy metal bioaccumulation risks associated with the human consumption. Based on various results, we may conclude that AD utilization in hydroponics can offer a sustainable solution to harvest a better lettuce yield, higher phytonutrients, and environmental benefits. Full article
Show Figures

Figure 1

16 pages, 1402 KiB  
Article
Growth and Biochemical Composition of Microgreens Grown in Different Formulated Soilless Media
by Roksana Saleh, Lokanadha R. Gunupuru, Rajasekaran Lada, Vilis Nams, Raymond H. Thomas and Lord Abbey
Plants 2022, 11(24), 3546; https://doi.org/10.3390/plants11243546 - 15 Dec 2022
Cited by 24 | Viewed by 6779
Abstract
Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard [...] Read more.
Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition. Full article
(This article belongs to the Special Issue Vegetable and Fruit Production)
Show Figures

Figure 1

15 pages, 1524 KiB  
Article
Effect of Pyroligneous Acid on the Productivity and Nutritional Quality of Greenhouse Tomato
by Raphael Ofoe, Dengge Qin, Lokanadha R. Gunupuru, Raymond H. Thomas and Lord Abbey
Plants 2022, 11(13), 1650; https://doi.org/10.3390/plants11131650 - 22 Jun 2022
Cited by 35 | Viewed by 4735
Abstract
Pyroligneous acid (PA) is a reddish-brown liquid obtained through the condensation of smoke formed during biochar production. PA contains bioactive compounds that can be utilized in agriculture to improve plant productivity and quality of edible parts. In this study, we investigated the biostimulatory [...] Read more.
Pyroligneous acid (PA) is a reddish-brown liquid obtained through the condensation of smoke formed during biochar production. PA contains bioactive compounds that can be utilized in agriculture to improve plant productivity and quality of edible parts. In this study, we investigated the biostimulatory effect of varying concentrations of PA (i.e., 0%, 0.25%, 0.5%, 1%, and 2% PA/ddH2O (v/v)) application on tomato (Solanum lycopersicum ‘Scotia’) plant growth and fruit quality under greenhouse conditions. Plants treated with 0.25% PA exhibited a significantly (p < 0.001) higher sub-stomatal CO2 concentration and a comparable leaf transpiration rate and stomatal conductance. The total number of fruits was significantly (p < 0.005) increased by approximately 65.6% and 34.4% following the application of 0.5% and 0.25% PA, respectively, compared to the control. The 0.5% PA enhanced the total weight of fruits by approximately 25.5%, while the 0.25% PA increased the elemental composition of the fruits. However, the highest PA concentration of 2% significantly (p > 0.05) reduced plant growth and yield, but significantly (p < 0.001) enhanced tomato fruit juice Brix, electrical conductivity, total dissolved solids, and titratable acidity. Additionally, total phenolic and flavonoid contents were significantly (p < 0.001) increased by the 2% PA. However, the highest carotenoid content was obtained with the 0.5% and 1% PA treatments. Additionally, PA treatment of the tomato plants resulted in a significantly (p < 0.001) high total ascorbate content, but reduced fruit peroxidase activity compared to the control. These indicate that PA can potentially be used as a biostimulant for a higher yield and nutritional quality of tomato. Full article
(This article belongs to the Special Issue Vegetable and Fruit Production)
Show Figures

Figure 1

18 pages, 6608 KiB  
Article
Effects of pH and Temperature on Water under Pressurized Conditions in the Extraction of Nutraceuticals from Chaga (Inonotus obliquus) Mushroom
by Ibrahim M. Abu-Reidah, Amber L. Critch, Charles F. Manful, Amanda Rajakaruna, Natalia P. Vidal, Thu H. Pham, Mumtaz Cheema and Raymond Thomas
Antioxidants 2021, 10(8), 1322; https://doi.org/10.3390/antiox10081322 - 23 Aug 2021
Cited by 27 | Viewed by 6732
Abstract
Currently, there is increased interest in finding appropriate food-grade green extraction systems capable of extracting these bioactive compounds from dietary mushrooms for applications in various food, pharmacological, or nutraceutical formulations. Herein, we evaluated a modified Swiss water process (SWP) method using alkaline and [...] Read more.
Currently, there is increased interest in finding appropriate food-grade green extraction systems capable of extracting these bioactive compounds from dietary mushrooms for applications in various food, pharmacological, or nutraceutical formulations. Herein, we evaluated a modified Swiss water process (SWP) method using alkaline and acidic pH at low and high temperature under pressurized conditions as a suitable green food grade solvent to obtained extracts enriched with myco-nutrients (dietary phenolics, total antioxidants (TAA), vitamins, and minerals) from Chaga. Ultra-high performance liquid chromatography coupled to high resolution accurate mass tandem mass spectrometry (UHPLC-HRAMS-MS/MS) was used to assess the phenolic compounds and vitamin levels in the extracts, while inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the mineral contents. Over 20 phenolic compounds were quantitatively evaluated in the extracts and the highest total phenolic content (TPC) and total antioxidant activity (TAA) was observed at pH 11.5 at 100 °C. The most abundant phenolic compounds present in Chaga extracts included phenolic acids such as protocatechuic acid 4-glucoside (0.7–1.08 µg/mL), syringic acid (0.62–1.18 µg/mL), and myricetin (0.68–1.3 µg/mL). Vitamins are being reported for the first time in Chaga. Not only, a strong correlation was found for TPC with TAA (r-0.8, <0.0001), but also, with individual phenolics (i.e., Salicylic acid), lipophilic antioxidant activity (LAA), and total antioxidant minerals (TAM). pH 2.5 at 100 °C treatment shows superior effects in extracting the B vitamins whereas pH 2.5 at 60 and 100 °C treatments were outstanding for extraction of total fat-soluble vitamins. Vitamin E content was the highest for the fat-soluble vitamins in the Chaga extract under acidic pH (2.5) and high temp. (100 °C) and ranges between 50 to 175 µg/100 g Chaga. Antioxidant minerals ranged from 85.94 µg/g (pH7 at 100 °C) to 113.86 µg/g DW (pH2.5 at 100 °C). High temperature 100 °C and a pH of 2.5 or 9.5. The treatment of pH 11.5 at 100 °C was the most useful for recovering phenolics and antioxidants from Chaga including several phenolic compounds reported for the first time in Chaga. SWP is being proposed herein for the first time as a novel, green food-grade solvent system for the extraction of myco-nutrients from Chaga and have potential applications as a suitable approach to extract nutrients from other matrices. Chaga extracts enriched with bioactive myconutrients and antioxidants may be suitable for further use or applications in the food and nutraceutical industries. Full article
Show Figures

Figure 1

12 pages, 3846 KiB  
Article
Latewood Ring Width Reveals CE 1734 Felling Dates for Walker House Timbers in Tupelo, Mississippi, USA
by Thomas W. Patterson, Grant L. Harley, David H. Holt, Raymond T. Doherty, Daniel J. King, Karen J. Heeter, Ashley L. Chasez, Alyssa C. Crowell and Ian M. Stewart
Forests 2021, 12(6), 670; https://doi.org/10.3390/f12060670 - 25 May 2021
Cited by 2 | Viewed by 2346
Abstract
Dendroarchaeology is under-represented in the Gulf Coastal Plain region of the United States (US), and at present, only three published studies have precision dated a collection of 18th–19th-century structures. In this study, we examined the tree-ring data from pine, poplar, and oak timbers [...] Read more.
Dendroarchaeology is under-represented in the Gulf Coastal Plain region of the United States (US), and at present, only three published studies have precision dated a collection of 18th–19th-century structures. In this study, we examined the tree-ring data from pine, poplar, and oak timbers used in the Walker House in Tupelo, Mississippi. The Walker House was constructed ca. the mid-1800s with timbers that appeared to be recycled from previous structures. In total, we examined 30 samples (16 pines, 8 oaks, and 6 poplars) from the attic and crawlspace. We cross-dated latewood ring growth from the attic pine samples to the period 1541–1734 (r = 0.52, t = 8.43, p < 0.0001) using a 514-year longleaf pine (Pinus palustris Mill.) latewood reference chronology from southern Mississippi. The crawlspace oak samples produced a 57-year chronology that we dated against a white oak (Quercus alba L.) reference chronology from northeast Alabama to the period 1765–1822 (r = 0.36, t = 2.83, p < 0.01). We were unable to cross-date the six poplar samples due to a lack of poplar reference chronologies in the region. Our findings have two important implications: (1) the pine material dated to 1734 represents the oldest dendroarchaeology-confirmed dating match for construction materials in the southeastern US, and (2) cross-dating latewood growth for southeastern US pine species produced statistically significant results, whereas total ring width failed to produce significant dating results. Full article
Show Figures

Figure 1

20 pages, 3125 KiB  
Article
Light Scattering in a Turbulent Cloud: Simulations to Explore Cloud-Chamber Experiments
by Corey D. Packard, Michael L. Larsen, Subin Thomas, Will H. Cantrell and Raymond A. Shaw
Atmosphere 2020, 11(8), 837; https://doi.org/10.3390/atmos11080837 - 7 Aug 2020
Cited by 1 | Viewed by 3048
Abstract
Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters [...] Read more.
Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters and voids within the droplet field can lead to deviations from exponential extinction. Prior work has numerically investigated these departures from exponential attenuation in absorptive and scattering media; this work takes a step towards determining the feasibility of detecting departures from exponential behavior due to spatial correlation in turbulent clouds generated in a laboratory setting. Large Eddy Simulation (LES) is used to mimic turbulent mixing clouds generated in a laboratory convection cloud chamber. Light propagation through the resulting polydisperse and spatially correlated particle fields is explored via Monte Carlo ray tracing simulations. The key finding is that both mean radiative flux and standard deviation about the mean differ when correlations exist, suggesting that an experiment using a laboratory convection cloud chamber could be designed to investigate non-exponential behavior. Total forward flux is largely unchanged (due to scattering being highly forward-dominant for the size parameters considered), allowing it to be used for conditional sampling based on optical thickness. Direct and diffuse forward flux means are modified by approximately one standard deviation. Standard deviations of diffuse forward and backward fluxes are strongly enhanced, suggesting that fluctuations in the scattered light are a more sensitive metric to consider. The results also suggest the possibility that measurements of radiative transfer could be used to infer the strength and scales of correlations in a turbulent cloud, indicating entrainment and mixing effects. Full article
(This article belongs to the Special Issue The Motion of Particles in Turbulence)
Show Figures

Figure 1

15 pages, 1615 KiB  
Article
Moose and Caribou as Novel Sources of Functional Lipids: Fatty Acid Esters of Hydroxy Fatty Acids, Diglycerides and Monoacetyldiglycerides
by Thu Huong Pham, Natalia P. Vidal, Charles F. Manful, Tiffany A. Fillier, Ryley P. Pumphrey, Karen M. Doody and Raymond H. Thomas
Molecules 2019, 24(2), 232; https://doi.org/10.3390/molecules24020232 - 10 Jan 2019
Cited by 37 | Viewed by 8259
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFA), diglycerides (DG) and monoacetyldiglycerides (MAcDG) are gaining interest as functional lipids in pharmaceuticals and functional food formulations for managing and treating metabolic or inflammatory diseases. Herein, we investigated whether the antler and/or meat of two [...] Read more.
Fatty acid esters of hydroxy fatty acids (FAHFA), diglycerides (DG) and monoacetyldiglycerides (MAcDG) are gaining interest as functional lipids in pharmaceuticals and functional food formulations for managing and treating metabolic or inflammatory diseases. Herein, we investigated whether the antler and/or meat of two Cervids (moose and caribou) are novel sources of FAHFA, DG and MAcDG. We observed FAHFA present in moose and caribou composed mainly of polyunsaturated families, and that the esterification occurred frequently at the C5-hydroxy fatty acid moiety, most noticeably arachidonic acid 5-hydroxyeicosatrienoic acid (ARA-5-HERA). Moose antler, caribou and moose meat also contained significant levels of both 1,2-DG and 1,3-DG lipids. The 1,3-DG molecular species consisted mainly of 16:0/18:1, 18:0/16:0, and 18:0/18:1. On the other hand, major 1,2-DG species consisted of DG 18:0/18:0, 16:0/16:0 and 18:1/18:1 molecular species with higher levels in the antler compared to the meat. The molecular species composition of MAcDG was very simple and consisted of 14:2/18:2/2:0, 16:0/18:2/2:0, 16:0/18:1/2:0 and 18:0/18:1/2:0 with the first species 14:2/18:2/2:0 predominating in the tip of moose antlers. Increasing access to and knowledge of the presence of these functional lipids in foods will enhance their intake in the diet with potential implications in improving personal and population health. Full article
Show Figures

Graphical abstract

Back to TopTop