Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Quentin Laporte-Fauret

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5524 KiB  
Article
Classification of Atlantic Coastal Sand Dune Vegetation Using In Situ, UAV, and Airborne Hyperspectral Data
by Quentin Laporte-Fauret, Bertrand Lubac, Bruno Castelle, Richard Michalet, Vincent Marieu, Lionel Bombrun, Patrick Launeau, Manuel Giraud, Cassandra Normandin and David Rosebery
Remote Sens. 2020, 12(14), 2222; https://doi.org/10.3390/rs12142222 - 11 Jul 2020
Cited by 32 | Viewed by 7264
Abstract
Mapping coastal dune vegetation is critical to understand dune mobility and resilience in the context of climate change, sea level rise, and increased anthropogenic pressure. However, the identification of plant species from remotely sensed data is tedious and limited to broad vegetation communities, [...] Read more.
Mapping coastal dune vegetation is critical to understand dune mobility and resilience in the context of climate change, sea level rise, and increased anthropogenic pressure. However, the identification of plant species from remotely sensed data is tedious and limited to broad vegetation communities, while such environments are dominated by fragmented and small-scale landscape patterns. In June 2019, a comprehensive multi-scale survey including unmanned aerial vehicle (UAV), hyperspectral ground, and airborne data was conducted along approximately 20 km of a coastal dune system in southwest France. The objective was to generate an accurate mapping of the main sediment and plant species ground cover types in order to characterize the spatial distribution of coastal dune stability patterns. Field and UAV data were used to assess the quality of airborne data and generate a robust end-member spectral library. Next, a two-step classification approach, based on the normalized difference vegetation index and Random Forest classifier, was developed. Results show high performances with an overall accuracy of 100% and 92.5% for sand and vegetation ground cover types, respectively. Finally, a coastal dune stability index was computed across the entire study site. Different stability patterns were clearly identified along the coast, highlighting for the first time the high potential of this methodology to support coastal dune management. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing for Biodiversity Mapping)
Show Figures

Graphical abstract

16 pages, 25606 KiB  
Article
Nature-Based Solution along High-Energy Eroding Sandy Coasts: Preliminary Tests on the Reinstatement of Natural Dynamics in Reprofiled Coastal Dunes
by Bruno Castelle, Quentin Laporte-Fauret, Vincent Marieu, Richard Michalet, David Rosebery, Stéphane Bujan, Bertrand Lubac, Jean-Baptiste Bernard, Alexandre Valance, Pascal Dupont, Ahmed Ould El Moctar and Clément Narteau
Water 2019, 11(12), 2518; https://doi.org/10.3390/w11122518 - 28 Nov 2019
Cited by 40 | Viewed by 6757
Abstract
This paper describes a large-scale experiment designed to examine if reinstating natural processes in the coastal dune systems of Southwest France can be a relevant nature-based adaptation in chronically eroding sectors and a nature-based solution against coastal hazards, by maintaining the coastal dune [...] Read more.
This paper describes a large-scale experiment designed to examine if reinstating natural processes in the coastal dune systems of Southwest France can be a relevant nature-based adaptation in chronically eroding sectors and a nature-based solution against coastal hazards, by maintaining the coastal dune ecological corridor. An experiment started in late 2017 on a 4-km-long stretch of coast at Truc Vert, where experimental notches were excavated and intensively monitored in the incipient and established foredunes. Preliminary results indicate that most of the excavated notches did not develop into blowout. Only the larger elongated notches subsequently excavated in the established foredune in 2018 showed evidence of development, acting as an effective conduit for aeolian landward transport into the dunes. All notches were found to have a statistically significant impact on vegetation dynamics downwind, even those that did not develop. The area of bare sand landward and within the elongated notches notably increased implying a loss of vegetation cover during this first stage of development. Observations of a nearby coastal dune system that has been in free evolution over the last 40 years also indicate that, although the dune migrated inland by more than 100 m, it is now mostly made of bare sand. Further work is required to explore if and how dunes maintained as dynamic systems can become an efficient nature-based solution along this eroding coastline. Full article
(This article belongs to the Special Issue Nature-Based Solutions for Coastal Engineering and Management)
Show Figures

Graphical abstract

16 pages, 7058 KiB  
Article
Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry
by Quentin Laporte-Fauret, Vincent Marieu, Bruno Castelle, Richard Michalet, Stéphane Bujan and David Rosebery
J. Mar. Sci. Eng. 2019, 7(3), 63; https://doi.org/10.3390/jmse7030063 - 7 Mar 2019
Cited by 142 | Viewed by 10222
Abstract
In this paper, coastal dune data are collected at Truc Vert, SW France, using photogrammetry via Unmanned Aerial Vehicles (UAVs). A low-cost GoPro-equipped DJI Phantom 2 quadcopter and a 20 MPix camera-equipped DJI Phantom 4 Pro quadcopter UAVs were used to remotely sense [...] Read more.
In this paper, coastal dune data are collected at Truc Vert, SW France, using photogrammetry via Unmanned Aerial Vehicles (UAVs). A low-cost GoPro-equipped DJI Phantom 2 quadcopter and a 20 MPix camera-equipped DJI Phantom 4 Pro quadcopter UAVs were used to remotely sense the coastal dune morphology over large spatial scales (4 km alongshore, i.e., approximately 1 km2 of beach-dune system), within a short time (less than 2 h of flight). The primary objective of this paper is to propose a low-cost and replicable approach which, combined with simple and efficient permanent Ground Control Point (GCP) set-up, can be applied to routinely survey upper beach and coastal dune morphological changes at high frequency (after each storm) and high resolution (0.1 m). Results show that a high-resolution and accurate Digital Surface Model (DSM) can be inferred with both UAVs if enough permanent GCPs are implemented. The more recent DJI Phantom 4 gives substantially more accurate DSM with a root-mean-square vertical error and bias of 0.05 m and −0.03 m, respectively, while the DSM inferred from the DJI Phantom 2 still largely meets the standard for coastal monitoring. The automatic flight plan procedure allows replicable surveys to address large-scale morphological evolution at high temporal resolution (e.g., weeks, months), providing unprecedented insight into the coastal dune evolution driven by marine and aeolian processes. The detailed morphological evolution of a 4-km section of beach-dune system is analyzed over a 6-month winter period, showing highly alongshore variable beach and incipient foredune wave-driven erosion, together with wind-driven inland migration of the established foredune by a few meters, and alongshore-variable sand deposition on the grey dune. In a context of widespread erosion, this photogrammetry approach via low-cost flexible and lightweight UAVs is well adapted for coastal research groups and coastal dune management stakeholders, including in developing countries where data are lacking. Full article
(This article belongs to the Special Issue Application of Remote Sensing Methods to Monitor Coastal Zones)
Show Figures

Graphical abstract

Back to TopTop