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Abstract: Mapping coastal dune vegetation is critical to understand dune mobility and resilience in
the context of climate change, sea level rise, and increased anthropogenic pressure. However, the
identification of plant species from remotely sensed data is tedious and limited to broad vegetation
communities, while such environments are dominated by fragmented and small-scale landscape
patterns. In June 2019, a comprehensive multi-scale survey including unmanned aerial vehicle (UAV),
hyperspectral ground, and airborne data was conducted along approximately 20 km of a coastal
dune system in southwest France. The objective was to generate an accurate mapping of the main
sediment and plant species ground cover types in order to characterize the spatial distribution of
coastal dune stability patterns. Field and UAV data were used to assess the quality of airborne data
and generate a robust end-member spectral library. Next, a two-step classification approach, based
on the normalized difference vegetation index and Random Forest classifier, was developed. Results
show high performances with an overall accuracy of 100% and 92.5% for sand and vegetation ground
cover types, respectively. Finally, a coastal dune stability index was computed across the entire study
site. Different stability patterns were clearly identified along the coast, highlighting for the first time
the high potential of this methodology to support coastal dune management.

Keywords: airborne hyperspectral; coastal dune vegetation; end-member spectral library; pixel-based
supervised classification; Random Forest; stability index

1. Introduction

The formation and evolution of coastal sand dunes, which back sandy beaches, result from
complex interactions between marine and aeolian sediment transport, plant ecosystem-engineering
effects, coastal and beach topography, and storms [1–7]. When not destroyed by human activity,
foredunes are formed by an accumulation of wind-blown sand, which is trapped by plant species
tolerant to sand burial. Indeed, once pioneer species that are tolerant to salinity and sand burial
colonize a shoreline, a positive feedback occurs between the trapped sand settling and the pioneer
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species colonization leading to the construction of the foredune [6]. This foredune provides a shelter,
reducing landward sand transport, and favors the colonization of vegetation species that are not
tolerant to sand burial, promoting plant succession, and, thus, an increase in vegetation cover and
stabilization of the dune system [8–10]. In addition, vegetated coastal dunes provide many other
ecosystem services, acting as a natural and effective barrier against marine flooding and storm waves
and greatly enhancing beach resilience [11], plant ecological niches, pollutant filtration, or nesting
sites [12]. However, the development of tourist activities in these environments can lead to a strong
degradation of the ecosystem and of the beach-dune system [12]. As dunes play an important role in
the protection from waves and flooding during storms by acting as a natural barrier, in recent decades,
many management plans have been proposed to prevent erosion and promote dune stabilization at the
detriment of natural processes. These management strategies generally include beach nourishment [13],
vegetation planting [14], sand fencing [15], or mechanical reprofiling [16]. Recently, in some regions of
the world, this method of stabilization has been challenged by another method that encourages the
dynamism of the environment in order to restore dune diversity and mobility [17–19]. Indeed, coastal
dune vegetation can affect the vulnerability of coastlines by determining the maximum height of the
foredune, but also their resilience, by modifying sand mobility [20,21]. Therefore, coastal dunes play a
crucial role for the future of sandy coasts [21,22]. In this context, mapping and monitoring the spatial
and temporal distribution of plant communities, together with morphological changes, is critical to
improve our understanding of coastal dune changes in response to natural forcing. This is crucial for
management strategies, ultimately for designing optimal sustainable development of these systems.

During the last few decades, multispectral and hyperspectral optical imagery showed high
potential to characterize spatial and temporal dynamics of coastal vegetation [23–25]. When combined with
exogenous data, these methods can answer ecological [26] and geomorphological [27] questions across
a wide range of scales. While airborne-based hyperspectral applications attempted to discriminate
vegetation at the species level, satellite-based multispectral approaches were mainly limited to the
identification of broad vegetation communities in fine-scale (1 m) and complex mosaic landscapes [23].
Because of reduced costs and time efforts, recent developments mainly focus on multispectral
approaches. They attempt to address and partially overcome the species detection limitation using
increased sensor capacities and methodological advances. For instance, based on phenological features
derived from multiyear time series of satellite images, phenology-based mapping approaches allow us
to address low biomass and highly fragmented systems [24]. Hybrid pixel-based and object-oriented
approaches using spectral and textural information at high [28,29] and very-high [25] resolutions
demonstrate a high potential for discrimination of plant species and fine scale interspersed coastal
plant communities.

However, despite these improved performances, hyperspectral applications still provide higher
classification accuracies at species level than multispectral approaches [30]. In the past years, a lot
of effort was dedicated to the development and comparison of different classifiers [31,32]. However,
few studies focused on the methodology to generate ab end-member spectral library [27,29], which is a
key issue to increase performances and provide automated and repeatable methods [33,34].

Our main objective in this study is to produce an accurate mapping of a large number of ground
cover types, including sediment, individual plant species, and broad plant communities, using an
original two-step pixel-based classification approach. This approach, based on a normalized difference
vegetation index (NDVI) and Random Forest classifier (RF), was developed from a comprehensive
dataset composed of an unmanned aerial vehicle (UAV), hyperspectral ground, and airborne data.
In addition, we also aim to examine the spatial distribution of sediment and vegetation in order to
characterize coastal dune stability patterns that are important from the perspective of sustainable
coastal dune management.
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2. Study Area

The study site is composed of beach-dune systems extending approximately 18 km alongshore in
Aquitaine, southwest France, from the Horizon beach to Grand Crohot beach (Figure 1a). This preserved
area, which is characterized by the absence of coastal resort and hard structures, represents an
ideal natural laboratory that has been used for assessing beach-dune evolution [35,36], plant–plant
interactions, and community composition [37–40]. Beaches are meso-macrotidal with a mean annual
spring tide of 3.7 m [41]. The coast is exposed to high-energy waves generated in the North Atlantic
Ocean. Winter wave energy shows large interannual variability, which can lead to dramatic coastal dune
erosion during severe winters [41,42]. Contrary to further north along the coast, where chronic erosion
can reach 5 m/y, the shoreline at the study area has been relatively stable over the past 65 years [43,44].
The large aeolian sand dunes have been formed through a mixture of natural Aeolian and biological
processes and large-scale anthropogenic works, primarily [45]: (1) erection of a foredune by progressive
fencing at the end of the 19th century and (2) extensive dune reprofiling with large-scale mechanical aid
and marram planting [46,47]. Since then, the coastal dune system has been softly managed by marram
grass planting and branching, particularly to prevent the development of blowouts. Current coastal
dune height reaches 20 to 25 m above mean sea level, with a width of approximatively 250 m, and is
composed, from the sea to the inland, of (1) the incipient foredune formed by Aeolian sand deposition;
(2) the established foredune, a shore-parallel dune ridge formed on the backshore by Aeolian sand
deposition and vegetation; (3) the transition dune; and (4) the grey dune, occupying the most inland
position closest to the forest. Vegetation zonation follows these four morphological units in relation to
plant species tolerance to physical disturbance (erosion and accretion due to marine and wind activity)
(Figure 1b) [4,37].

The incipient foredune (the most disturbed unit subject to marine and Aeolian action) is mainly
colonized by Elymus farctus (Ely, Figure 1c). This pioneer species can rapidly grow in this habitat
because of its high tolerance to sand deposition and the increase in sediment fertility provided by
organic matter brought by the sea and the decrease in atmospheric stress due to the water spray [37].
The associated pioneer species (Euphorbia paralias and Eryngium maritimum, Figure 1c) mainly form
diffuse patches with low vegetation cover (<30%) [37].

The established foredune (a less disturbed unit mainly subject to Aeolian action) is largely
dominated by Ammophila arenaria (Amm, Figure 1c), a species which was used for dune building
due to its long leaves, which trap the windblown sand and its dense root network promoting dune
stabilization. The plantation of Ammophila arenaria is still used nowadays by coastal dune stakeholders
for promoting dune recovery after severe winter storms. Other species are Otanthus maritimus (Ota,
Figure 1c), generally pure low-density patches on the established foredune ocean face, and Galium
arenarium (Gal, Figure 1c), forming dense patches of several tens of meters on the established foredune
inland face when fully developed at the end of spring. The incipient foredune (IFS) and established
foredune (EFS) sands are both characterized by a highly mobile surface sand (for mobile dune sand
(MDS)), with a median grain size of 414 µm [40].

Behind the established foredune is the transition dune (more stable and less subject to sand
burial), colonized by perennial species, primarily Helychrisum stoechas (Hel, Figure 1c) and Artemisia
campestris (Art, Figure 1c), the latter developing dense patches extending a few meters horizontally.
Here, the grains of sand are slightly finer (median grain size of 389 µm [40]) and are mixed with plant
debris (grey dune sand (GDS)).
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Figure 1. (a) Location map and aerial photograph of Truc Vert beach, representative of southwest
France beaches with a well-managed alongshore-uniform coastal dune; the red line on the location
map indicates the 18 km of coastline studied; (b) cross-shore profile of the Truc Vert beach/dune
system, showing the different coastal dune units; and (c) photographs of the dominant coastal dune
plant species.

Finally, the grey dune (highly stable and mostly sheltered from sand sprinkling during winter
storms) is at the junction between the herbaceous and forest environments. It is characterized by
the presence of mosses, lichens, the perennial grass Corynephorus canescens, many small annuals
(Phleum arenarium, Cerastium glomeratum, Vulpia membranacea, and Senecio vulgaris), and woody species
such as Pinus maritima (Pin, Figure 1c). In addition, it is an environment of high floristic interest,
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which is classified as a priority natural habitat by the European commission (Habitat Code 2130 in the
Habitat Directive 62/43 (of 21 May 1992, applicable in France since 1994)).

Plant species and natural habitats previously described allow us to define 11 plant communities
and sand cover classes (Amm, Gal, Hel, Art, Ely, Ota, MDS, GDS, sparse vegetation (SPV), grey dune
vegetation (GDV), Pin, see Table 1), which, for the most part, play a major role in the morphological and
ecological processes of the coastal dunes in southwest France [37]. SPV (i.e., SParse vegetation, Figure 1c)
gathers some species of the incipient foredune (i.e., Euphorbia paralias and Eryngium maritimum), which
cannot be radiometrically discriminated between them with a 1 m2 resolution sensor due to the
very low coverage and very small scale of features. For the same reasons, grey dune vegetation
(GDV; Figure 1c) gathers some species of the grey dune (i.e., Corynephorus canescens, Phleum arenarium,
Cerastium glomeratum, Vulpia membranacea, and Senecio vulgaris). These species are interspersed with
each other in very dense features. The eastern boundary of the study site is defined by the iso-contour
of topographic elevation z = 12 m, which corresponds to the middle of the grey dune inland face.
The western boundary is defined as the beach—incipient foredune limit monitored on 21 May 2019
using an all-terrain vehicle (ATV), equipped with a differential global positioning system (DGPS).

Table 1. Sampling strategies and the number of collected points for the different plant species and sand
types. The choice of the sampling strategy depends on the patch size (large patch ≥1 m2; small patch
<1 m2; very small patch <<1 m2), optical homogeneity, and species diversity in a 1 × 1 m2 pixel. List of
acronyms: Amm (Ammophila arenaria), Gal (Galium arenarium), Hel (Helychrisum stoechas), Art (Artemisia
campestris), Ely (Elymus farctus), Ota (Otanthus maritimus), MDS (Mobile Dune Sand), GDS (Grey Dune
Sand), SPV (Sparse Vegetation), GDV (Grey Dune Vegetation), Pin (Pinus marimima), IFS (Incipient
Foredune Sand), EFS (Established Foredune Sand).

Classes Characteristics of Ground
Covers Sampling Strategy # Collected

Replicates

Amm Large patches Field
9 points/quadra 90

Gal Large patches Field
9 points/quadra 90

Hel Large patches Field
9 points/quadra 90

Art Large patches Field
9 points/quadra 90

Ely Small patches Field
1 point/quadra 30

Ota Small patches Field
1 point/quadra 30

MDS Spatially homogeneous Field
1 point/quadra

30 (IFS)
30 (EFS)

GDS Spatially homogeneous Field
1 point/quadra 30

SPV Very Small patches
High intra-pixel diversity

Airborne
Mask extraction 176

GDV Very Small patches
High intra-pixel diversity

Airborne
Mask extraction 203

Pin Height >1 m Airborne
Mask extraction 159

3. Materials and Methods

3.1. Airborne Hyperspectral Data

On 18 June 2019, the 18 km coastline of the study site was flown over by a Chieftain PA31-350
aircraft from PIPER (Vero Beach, FL, USA) operated by PIXAIR company, equipped with a Visible Near
InfraRed (VNIR) hyperspectral HySpex VNIR 1600 camera from Norsk Elektro Optikk, Skedsmokorset,
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Norway, operated by the Laboratory of Planetology and Geodynamics (LPG) and measuring 160
spectral channels (from 409.23 nm to 987.08 nm in steps of 3.61 nm, with a 4.5 nm spectral resolution)
and an angle of aperture of 17◦. The record of the aircraft attitude, with the fast inertia measurement
unit (IMU), coupled to the accurate global positioning system (GPS) of POS AV AP50 OEM (IMU-8)
from Applanix (Richmond Hill, Ontario, Canada) mounted in the dual wavelength Ligth Detection
and Ranging (LiDAR) Titan of Teledyne Optech Incorporated (Vaughan, Ontario, Canada) was provide
by the LiDAR Nantes-Rennes university platform, and the trajectory was calculated by GEOFIT
Expert Company (Nantes, France). The images acquired by the VNIR camera were transformed into
luminance from a sensor factory calibration and were georeferenced using the airborne trajectory with
Airborne Optical Scanner Data (PARGE) v3.4 software (ReSe Applications LLC, Wil, Switzerland) [48].
The overlap between each image was 45% to avoid gaps between irregular flight lines, but only the
pixels with the best angle of incidence were kept to minimize the directional effect, as discussed in [48].
Moreover, as discussed in [49], this also minimizes the strong deviations induced by the different spatial
resolutions and the distances to the target between field measurements and remote acquisitions [50,51].
Atmospheric corrections were then applied with Atmospheric and Topographic Correction (ATCOR-4)
v7.3 software (ReSe Applications LLC, Wil, Switzerland) [48] in order to obtain a VNIR image with a
resolution of 1 × 1 m. Using the ASD FieldSpec3 FR spectrometer (Malvern Panalytical Ltd., Royston,
UK) of the LPG laboratory, a final spectral intensity adjustment was applied to insure the best matching
between airborne and a single ground reflectance of dry sand, removing the weak anomalous spectral
undulation that remained after the atmospheric compensation [52].

3.2. UAV Data

On 19 June 2019, a UAV survey covering 4 km of beach dune system at Truc Vert beach was
conducted with a DJI Phantom 4 Pro quadricopter, equipped with a 20 MPix camera. Photogrammetry
algorithms from the Agisoft Metashape software v1.5, together with the presence of 36 adequately
distributed permanent ground control points, allowed generating of a 0.02 m resolution orthomosaic,
with a planimetric error of 0.019 m and 0.026 m for the x axis and y axis, respectively [36]. Based
on the primary authors expertise on photointerpretation of existing cover types from UAV imagery,
the georeferenced orthomosaic was used to generate a suite of masks that allowed extracting control
points from airborne VNIR images. A total of 1488 control points (ranging from 63 to 203 per class)
were used to generate validation points in order to assess the performances of supervised classification.
For only three classes (GDV, Pin, and SPV), control points also allowed the extraction of random
training points, which are independent of validation points. First, dense and extensive areas associated
with the 11 ground cover types were visually located and digitized on the orthomosaic. These masks
were then used to extract the control points from the airborne VNIR image (Figure 2).
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Figure 2. Zoom in on a Galium arenarium patch using (a) a 0.02 m resolution unmanned aerial vehicle
(UAV) orthomosaic and (b) a 1 m resolution airbornepseudo-color VNIR image. Zoom in on an
Artemisia campestris patch using (c) an UAV orthomosaic and (d) an airborne image. The black lines
represent the contour of the vegetation patch, and the white dots the pixels are used as control points.

3.3. Ground Hyperspectral Data

On 25 June 2019, a radiometric ground survey was carried out at Truc Vert beach in order to collect
the in situ remote sensing reflectance spectra of different coastal dune cover types. Hyperspectral
measurements were performed in the 400–900 nm spectral range (every 3 nanometers) from two
radiometrically-calibrated TriOS-RAMSES sensors [53]. The radiance sensor was pointed downward
to measure the upward signal of the substrate (Lu(λ), W·m−2

·sr−1
·nm−1), while the irradiance sensor

was pointed upward to measure the downward irradiance (Ed (λ), W·m−2
·nm−1). The radiance sensor

had a field of view of 7◦. It was mounted on a tripod 1.2 m above the ground (Figure 3a) and
provided field samples with a unit area of 0.017 m2. Radiance and irradiance measurements were
performed simultaneously, as in [54]. The remote sensing reflectance (Rrs(λ), sr−1) was then calculated
as the ratio of Lu(λ) to Ed(λ). Note that, for brevity, hereafter, we did not include the reference to the
spectral dependency.
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Figure 3. Photos taken at the study site on 25 June 2019, showing (a) the deployment mode of radiance
TriOS-RAMSES sensor on tripod 1.2 m and the heterogeneity of the optical signal of vegetation and
sand covers over unit area of 1 m2, requiring an adaptive sampling strategy for (b) large vegetation
patches (example of Galium arenarium); (c) plant species with isolated individuals, or sparse cover
(example of Elymus farctus); (d) bare dune sand (example of the mobile sand dune).

In complex and very fine-scale fragmented vegetation mosaics, due to a high intra-patch variability
of density and vegetation cover, ground Rrs spectra are the result of a linear spectral mixture
between plant species and soil contributions. Sampling strategies and the number of collected points,
summarized in Table 1, were designed to collect the ground reference Rrs spectra (RG-REF) of each plant
species and sand types with the lowest mixing percentage. Ground measurements were performed
in 1 × 1 m2 representative field sites, dominated by one ground cover type. For plant species with
patches equal to or larger than 1 m2 (Amm, Gal, Hel, Art), a 1 × 1 m2 quadra was used to collect Rrs at
nine points homogeneously distributed over features with dense cover (Figure 3b). For plant species
characterized by isolated individuals or patches with sparse vegetation covers (Ota and Ely) and for
sand types (IFS, EFS, and GDS), three replicates of Rrs measurements were performed on individuals,
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showing the highest vegetation cover (Figure 2c), and on spatially homogeneous sites (Figure 3d),
respectively. Then, for each ground cover type, RG-REF was computed by averaging all Rrs spectra.

It is important to note that no field measurements were performed for SPV, GDV, or Pin. SPV
and GDV habitats were characterized by a high spatial variability of intra-patch diversity, which was
difficult to record. In addition, the instruments were not suitable to measure Pin species reflectance,
due to their height (>2 m).

Associated with radiometric measurements, geo-positioning data, using a differential global
navigation satellite system (DGNSS), were collected in order to generate matchups for comparison
between ground and airborne hyperspectral data. Finally, a linear interpolation was applied to field
data in order to make them compatible with the spectral bands of airborne data.

3.4. Pixel-Based Classification

3.4.1. End-Member Spectra

End-member spectra, associated with the 11 vegetation and sand cover classes, were generated
from airborne VNIR training points. For SPV, GDV, and Pin habitats, 50 Rrs spectra per ground cover
type were randomly extracted from the control points associated with their respective masks. For other
types of ground cover, methodology was based on the extraction of 3 × 3 sub-images centered on field
measurement locations. These sub-images allowed us to compute for each ground cover type the
mean Rrs spectra, so called here, the airborne reference Rrs spectra (RA-REF), and the airborne reference
standard deviation. The analysis of the spectra extracted from control points shows that the spectral
variability of Rrs for MDS, Ely, Amm, Gal, and Art follows a normal distribution for any wavelengths
(p-value of the Shapiro–Wilk normality test <0.01). For GDS, Ota, and Hel, the normality is rejected only
for near-infrared (NIR) bands at the 0.01 level but is accepted at the 0.001 level. Based on these results,
50 Rrs spectra per ground cover type were further randomly computed using a normal probability law
in order to generate the training dataset. In order to take into account all the cross-shore variability
associated with MDS, this class was specifically composed of 25 spectra of IFS and 25 spectra of EFS.
In total, the vegetation and sand reference dataset consisted of 550 spectra. This procedure allowed
reproducing of a spectral mixing range statistically representative of the study site.

The mixing percentage, α, ranging from 0 to 1, could be derived from the linear spectral
mixture model:

Rmod = α ×RG−REF;Sdi + (1− α) ×RG−REF;Spj (1)

where Rmod is the modeled Rrs, RG-REF;Sdi is the ground reference Rrs spectrum of sand type i,
and RG-REF;Spj isthe ground reference Rrs spectrum of plant species j. A root mean square cost function
between airborne Rrs and Rmod was implemented to estimate α values and then its statistical distribution
was generated for each plant species.

3.4.2. Normalized Difference Vegetation Index Filter

Prior to applying a supervised classification of the airborne VNIR image, we conducted a first
experiment using a spectral index in order to differentiate pixels with and without vegetation covers.
This first step was crucial in sparse and very fine-scale fragmented vegetation mosaics. In 1 × 1 m2

pixels with a low but ecologically significant presence of vegetation, the percentage of sand contribution
in the mixing Rrs spectrum can be high and may generate misclassified points between vegetation and
sand. The normalized difference vegetation index (NDVI) has been proven to be useful for ground
cover type characterization [55–57], including, more specifically, coastal dune areas [24]. The NDVI
was computed as:

NDVI =
Rrs(λNIR) −Rrs(λR)

Rrs(λNIR) + Rrs(λR)
(2)
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where the subscripts NIR and R are associated with the near-infrared and red bands, respectively.
The differentiating procedure of sand and vegetation covers is based on a NDVI threshold value.
The most relevant value was objectively determined using a statistical analysis on the end-member
NDVI values.

3.4.3. Random Forest

After having separated the observations into two separate classes (sand or vegetation cover) based
on the NDVI index, a Random Forest (RF) classifier [58] was considered for pixel-based classification,
as shown in Figure 4. RF is a suitable algorithm for coastal vegetation classification, because of its
stability and ability to discriminate ground cover differences [24,32,54,59,60]. When applying the RF
classifier, the classification map is accompanied by an accuracy map, which contains the indicator of
the confidence degree of the classification. More precisely, the RF classifier is composed of a set of
different individual base classifiers (decision trees), each tree giving a decision, and the final decision
corresponds to the majority vote. The degree of confidence is obtained as the percentage of individual
classifiers that provided a decision equal to the final one.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 25 
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An accuracy assessment was performed through the confusion matrix, with dimensions equal
to the number of classes, from which the overall accuracy was extracted. The agreement between
classified points and ground truth was based on a dataset of 550 validation points, i.e., 50 validation
points were randomly extracted for each of the 11 cover masks. For SPV, GDV, and Pin vegetation,
we removed training points prior to the extraction of validation points.

For SPV, GDV, and Pin vegetation, we removed training points prior to the extraction of validation
points. Validation points, training points, and mean ground hyperspectral reflectance spectra are freely
available at the Supplementary Materials.

3.5. Stability Index

Based on seasonal surveys of vegetation abundance at this coastal dune system, [40] showed
that plant species were spread out according to their tolerance to disturbance, which, in this system,
is primarily driven by sand burial. This distribution can be seen in Figure A1 in the correspondence
analysis (CA), where plant species have a perfect cross shore distribution along the first axis, representing
a disturbance gradient, going from the most disturbed habitat (incipient foredune) to the most stable
one (grey dune). Thus, it is possible to extract the CA axis 1 coordinate of each plant species and to
associate a value between 0 (highly disturbed) and 1 (highly stable). A value of 0 was associated to the
bare sand (MDS and GDS), 1 to Pins and the value of SPV and GDV corresponded to the mean axis
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value of species representing theses classes (i.e., Euphorbia paralias and Eryngium maritimum for SPV
and Phleum arenarium, Cerastium glomeratum, Corynephorus canescens, Vulpia membranacea, and Senecio
vulgaris for GDV) (Table 2), calculating a mean stability index for each cross shore transect.

Table 2. Coordinate of each class on the first axis of the correspondence analysis and their associated
stability index.

Class Axis 1 Value [40] Stability Index

MDS - 0
GDS - 0
Ely −1.12 0.20
Ota −0.83 0.25
SPV −0.76 0.27

Amm −0.33 0.35
Gal 0.14 0.43
Art 0.90 0.57
Hel 1.75 0.73

GDV 2.14 0.8
Pin - 1.0

4. Results

4.1. Analysis of Spectral Signatures of Ground Cover Types

Mean RG-REF displays sharp spectral characteristics, which allows discriminating the different
ground cover types (Figure 5a). The spectral signature of MDS and GDS is monotonically increasing
from blue to near-infrared (NIR) wavelengths. For any spectral bands, GDS shows lower Rrs values
than MDS, due to the presence of high concentrations of black organic debris strongly absorbing the
incident irradiance. RG-REF spectra of Ely, Gal, and Art show a typical spectral behavior of plant covers
with a minimum value at 680 nm and a sharp increase in reflectance values in the red edge region
(680–750 nm), due to leaf pigment absorption in red and leaf cellular scattering in NIR spectral bands,
respectively [30]. For Ota, Amm, and Hel, RG-REF spectra are the result of the spectral mixture between
sand and plant species. The sand percentage is higher for Ota, which has very scattered patches.
It is weaker for Hel. The sampled features have very sharp outlines and are very dense. However,
their feature surface is less than 1 m2, and two of the nine sampled pixels are dominated by GDS cover.

Field and airborne hyperspectral data show good agreement, except for Gal and Art. IFS and EFS,
which are characterized by a high optical homogeneity of the substrate into the 3 × 3 box, have the
lowest mean relative difference (MRD), with a value of 1.0% and 3.7%, respectively (Figure 5b). Spectral
agreement is better for visible wavelengths (0.8% and 1.4% for IFS and EFS, respectively) than for NIR
bands (1.3% and 6.9%). GDS, Amm, and Hel, which are characterized by a slight heterogeneity into
the 3 × 3 box, have MRD values of 6.3%, 9.9%, and 7.5%, respectively (Figure 5c–e). On the other hand,
field and airborne Rrs spectra of Gal and Art are significantly different in magnitude, with MRD values
of 57.7% and 92.5%, respectively. These differences are due to the non-alignment between airborne
grid and field quadrats. While field measurements recorded Rrs over dense and homogeneous plant
features, airborne measurements recorded Rrs of ground covers composed of sand and vegetation.
The mixing percentages (see Equation (2)) associated with the Gal and Art RA-REF are estimated to 51%
(MRD = 3.5%) and 46% (MRD = 2%), respectively.
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Figure 5. (a) Mean ground reference Rrs spectra (RG-REF) and comparison with mean airborne reference
Rrs spectra (RA-REF) for (b) incipient foredune sands (IFS) and established foredune sands (EFS), which
compose mobile dune sand (MDS), (c) GDS, (d) Ammophila arenaria (Amm), (e) Galium arenarium (Gal),
(f) Helychrisum stoechas (Hel), and (g) Artemisia campestris (Art) covers. Black and red lines are associated
with RA-REF and RG-REF, respectively. Grey and red areas correspond to the 95% confidence interval of
RA-REF and RG-REF, respectively. For field data, an up-scaling procedure [61] was used to convert field
variance into equivalent airborne variance.

Rrs spectra of sand ground covers (Figure 6a,b) display a high spectral variability, which takes
into account the cross-shore variability of sand and the variability of black organic debris concentration
for MDS and GDS, respectively. Spectral characteristics of plant ground cover Rrs of established
foredunes and transition dunes show a high mixing percentage with sand. High similarity is observed
between Ely (Figure 6c), Ota (Figure 6d), SPV (Figure 6e), and MDS spectra and Amm (Figure 6f), Hel
(Figure 6h), and GDS spectra, respectively. On the other hand, Rrs spectra of GDV and Pin classes
show spectral signatures significantly different than Rrs spectra of sand classes. The spectral similarity
between some mixed plant species and sand classes can generate misclassified pixels, which impact the
performance of supervised classifications. Prior to applying supervised classifications, NDVI was used
to differentiate sand and plant ground covers. Several combinations of spectral bands were tested,
and the best results were achieved using the red edge bands of 680 nm and 750 nm. Figure 7 shows
statistics of NDVI values for the 11 ground cover classes. The first, second, and third quartiles of MDS
and GDS were 0.019, 0.025, 0.038, and 0.038, 0.049, 0.061, respectively, while they were 0.066, 0.074,
0.081 for Hel, which displayed the lowest difference. A nonparametric one-way analysis of variance
(Kruskal–Wallis test), followed by nonparametric pair-wise comparisons (Wilcoxon–Mann–Whitney
test), highlights that NDVI median values between sand and plant species classes are statistically
different (p-value ≤ 0.001). Based on the analysis of the NDVI value distribution of GDS and Hel,
we selected the threshold value of 0.061 to differentiate sand and plant ground covers. The choice of
the third quartile of GDS NDVI values allows to classify sparse vegetation covers as vegetation (see
Figure A2 for the NDVI map).
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Figure 6. End-member spectra of 11 coastal dune ground cover classes generated from airborne
hyperspectral data: (a) mobile dune sand (MDS), (b) grey dune sand (GDS), (c) Elymus farctus (Ely),
(d) Otanthus maritimus (Ota), (e) sparse vegetation (SPV), (f) Ammophila arenaria (Amm), (g) Galium
arenarium (Gal), (h) Helychrisum stoechas (Hel), (i) Artemisia campestris (Hel), (j) grey dune vegetation
(GDV), and (k) Pinus marimima (Pin).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 24 
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Figure 7. Boxplot of normalized difference vegetation index (NDVI) computed with red edge spectral
bands. Within the boxes, bold lines represent median and lower and upper hinges represent first and
third quartiles. At the maximum, bars correspond to 1.5 times the interquartile distance and solid
circles correspond to observations outside the bars. The red line corresponds to the NDVI threshold
of 0.061.
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4.2. Assessment of Pixel-Based Supervised Classification Performances

The results of the RF classifier on the 550 validation points are shown in Tables 3 and 4 for
sand and vegetation classes, respectively. The discretization between the two sand types is excellent,
with an overall accuracy of 100% (Table 3). For vegetation, the overall accuracy is 82.67% (Table 4).
Only three classes have a precision lower than 90%; Ely (62%), Ota (10%), and Gal (86%). The poor
performance for Ota classification can be attributed to a low variability of its spectral signature in the
training dataset (see Figure 6d) and a high similarity of Rrs spectra with the other plant classes of the
established foredune. For example, 32% of misclassified pixels are associated with SPV. In coastal dune
environments, Ota population is composed of isolated individuals and patches with sparse vegetation
cover. A spatial resolution of 1 m2 is clearly a major limitation for the identification of scattered plant
species with low ground coverage in complex vegetation mosaic systems.

Table 3. Confusion matrix of the Random Forest (RF) classification for the two sand classes.

MDS GDS Class Accuracy (%)

MDS 50 0 100
GDS 0 50 100

Overall accuracy = 100%.

Table 4. Confusion matrix of the first RF classifier for the nine vegetation classes.

Ely Ota SPV Amm Gal Hel Arm GDV Pin Class Accuracy (%)

Ely 31 0 19 0 0 0 0 0 0 62
Ota 7 5 16 9 9 0 4 0 0 10
SPV 0 0 50 0 0 0 0 0 0 100
Amm 0 0 0 50 0 0 0 0 0 100
Gal 0 0 7 0 43 0 0 0 0 86
Hel 0 0 0 0 0 50 0 0 0 100
Arm 0 0 0 2 0 0 48 0 0 96
GDV 0 0 0 0 0 0 0 50 0 100
Pin 0 0 0 2 0 0 3 0 45 90

Overall accuracy = 82.67%.

Despite an overall accuracy reaching 82.67%, which already represents a good agreement [62],
a second RF model was learned by integrating Otanthus maritimus in the SPV class (Table 5). For this
second RF vegetation classification, Ely and Gal are still under 90% accuracy, with 64% and 82%,
respectively. According to the confusion matrix, the misclassified Ely and Gal pixels are in SPV. Indeed,
in their undeveloped stage, Ely and Gal are characterized by small plants of about 10 cm and are
quite isolated on a surface area of 1 m2. It is only when they are well developed that they can easily
cover this surface and thus be well classified. However, the overall accuracy of the vegetation species
classification reaches 92.25%, which represents a strong agreement [62].

The RF classifier also highlights the importance of the spectral channels used in the classification.
Thus, it was possible to study the impact of the number of bands used (from the most to the least
important) on the overall accuracy of the vegetation classification, which increases non-linearly with
the number of channels used (left axis on Figure 8a). In fact, there seems to be a threshold of 19 bands
that allows the accuracy to increase from 76.75% (with 18 channels) to 83.5% before asymptotically
increasing. This sudden increase in accuracy was obtained by adding the wavelength 675 nm, whereas
all the bands used before were between 750 nm and 900 nm, highlighting the importance of NIR
wavelengths in the classification of plant species (right axis on Figure 8a). In addition to the spectral
resolution, the impact of the spatial resolution on the vegetation classification accuracy was evaluated
by progressively degrading the pixel size from 1 m2 to 20 m2. Our classification procedure was then
applied to the entire image for the eight vegetation classes. The classification accuracy ranged from
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92.75% for 1 m2 pixel to 73.02% for 2 m2 pixel then decreased drastically below 70% for larger sizes
(Figure 8b).

Table 5. Confusion matrix of the second RF classifier for the eight vegetation classes (after merging Ota
and SPV).

Ely Spv Amm Gal Hel Arm GDV Pin Class Accuracy (%)

Ely 32 18 0 0 0 0 0 0 64
Spv 0 50 0 0 0 0 0 0 100
Amm 0 0 50 0 0 0 0 0 100
Gal 0 9 0 41 0 0 0 0 82
Hel 0 0 2 0 48 0 0 0 96
Arm 0 0 0 0 2 48 0 0 96
GDV 0 0 0 0 0 0 50 0 100
Pin 0 0 0 0 0 0 0 50 100

Overall accuracy = 92.25%.
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Figure 8. (a) Evolution of the overall accuracy (left axis) for the vegetation class and the selected
wavelength (right axis) as a function of the number of channels used in the RF classifier (classed in
order of importance according to their mean decrease in the Gini index) and (b) evolution of the overall
accuracy as a function of the pixel size for the vegetation class.

4.3. Spatial Distribution of Coastal Dune Vegetation

The aerial image (Figure 9a) shows a relatively alongshore-uniform coastal dune, which is well
vegetated, except at the southern end between −6 and −10 km, characterized by a much less dense
and heterogeneous dune vegetation cover and a large bare sand surface. The RF classification map
(Figure 9b) shows that each plant species is well classified in its ecosystem (e.g., Ely in incipient
foredunes, Amm in established foredunes), with an accuracy generally better than 50% in the transition
dune and better than 70% in the other dune units (Figure 9c). The alongshore stability index is in
line with visual observation (Figure 9a), with an average value of 0.37 (std = 0.09, se = 7.52 × 10−4)
between the northern limit and −6 km alongshore. Some variations are also locally observed due to the
presence of access tracks. In the southern sector, between −6 and −10 km, a high alongshore variability
is observed, with a mean stability index of 0.33 (std = 0.15, se = 2.5 × 10−3) (Figure 9d).
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Figure 9. Representation of the 18 km alongshore of the study site with (a) the aircraft color orthophoto,
(b) the result of RF classification, (c) the results of RF classification accuracy, and (d) the stability index.
The right panels represent 1.1 km alongshore zooms of these four parameters for (e–h) the northern,
(i–l) the central, and (m–p) the southern zone.

The RF classification also highlights the percentage of appearance of each class (Table 6) with
the predominance of the dominant species, such as Amm representing the established foredune
(10.64%), Hel representing the transition dune (17.77%), and GDV (7.40%) representing the grey dune.
The presence of MDS is generally higher than GDS because of the greater plant cover in the transition
dune and grey dune than in the incipient and established foredunes. Only the central area (Figure 9j)
shows a lower percentage of MDS than GDS. This can be mainly attributed to a narrower width of the
established foredune.
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Table 6. Percentage of presence of each class of the different areas of Figure 9.

Class Overall (%)
(Figure 9b)

Southern Area (%)
(Figure 9n)

Central Area (%)
(Figure 9j)

Northern Area (%)
(Figure 9f)

MDS 21.84 41.20 19.12 24.83
GDS 16.16 21.63 22.87 11.27
Ely 2.42 0.34 2.62 4.86
SPV 2.61 0.22 2.99 5.92

Amm 10.64 8.11 9.95 12.22
Gal 3.63 1.82 4.14 5.69
Hel 17.77 3.80 22.66 18.54
Arm 11.44 9.85 7.74 9.51
GDV 7.40 6.05 3.84 4.53
Pin 6.09 6.98 4.07 2.63

The large bare sand areas in the southern area, between −6 km and −10 km, are clearly visible
in the 1.1 km alongshore zoom (Figure 9m,n), where they represent 62.83% of the surface. These
areas, with a low vegetation cover and quite a low and variable stability index (mean value of 0.23,
with std = 0.10, se = 2.9 × 10−3) characterize a less stable and therefore possibly more mobile sand
dune (Figure 9p and Table 6). To limit such dune mobility and prevent blowout development, coastal
dune stakeholders have developed various techniques, including the laying of tree branches. This
technique, which aims to stop Aeolian erosion and favor sand deposition, is often used to stabilize
active dune blowout and/or to protect the inland infrastructures (roads, buildings) or forests from the
windblown sand [46,47]. Tree branches within the established foredune are visible in the zoom into
the southern zone. Nevertheless, the class associated with this type of cover has not been taken into
account in this study due to the low number of control points. As a consequence, tree branch cover is
mainly classified as GDV generating misclassified pixels. This class should be taken into account in
future research.

The zoom into the northern zone (Figure 9e,f) shows a greater stability, with an average stability
index of 0.31 with some alongshore variations (std = 0.06, se = 1.7 × 10−3) (Figure 9h). Indeed,
the established foredune width is not uniform alongshore and shows variations by several tenths of
meters in width. Such variability is caused by the localized presence of developing blowouts, leading
to the presence of sand deposition fields across the transition dune. In turn, this promotes the presence
of vegetation tolerant to physical disturbance (i.e., Ely and SPV) over a large cross-shore distance of
about 75 m.

Finally, the zoom on the central area (Figure 9i,j) shows greater stability than the two previous
sectors, with an almost alongshore-uniform stability index with an average of 0.36 (std = 0.05,
se = 1.6 × 10−3) (Figure 9i). Plant species characteristics of disturbed environments are present only
over a short cross-shore distance of less than 50 m. Moreover, the classification highlights the
recolonization of the vegetation of a sand deposition field, extending approximately 100 m in the cross
shore direction across the transition dune that formed during the severe 2017–2018 winter storms [36],
covering plant species that are not tolerant to sand burial with about 10 cm of sand.

5. Discussion

The first objective of this paper was to develop a pixel-based classification approach in order to
generate a comprehensive coastal dune cover mapping, including a large number of classes. Such classes
are critical for coastal dune managers in the short term, e.g., to address blowout development or the
impact of fencing or branching on vegetation dynamics. In the long-term, for example, decade(s), such
mapping will provide new insight into the large-scale variability of vegetation ground cover type in
relation to natural (e.g., marine erosion) and anthropogenic (e.g., dune reshaping) forcings. However,
a major drawback for remotely sensed application in fragmented and fine-scale environments is the
high spectral similarity between different vegetation cover types due to spectral mixing with sand.



Remote Sens. 2020, 12, 2222 18 of 25

To address this issue, recent research has focused on phenology-based [24] or spectral library-based [34]
approaches. For high-energy eroding sandy coasts, the high mobility of MDS significantly reduces the
interest of the former approach.

Spectral library approaches require specific procedures to generate end members [34,63]. To take
into account the range of natural variability of spectral mixing into each class, matchups between
ground and airborne data are used to compute airborne reference reflectance spectra (RA-REF) and
its standard deviation. The normal probability law is then used to randomly generate end-member
spectra of each class. In a pre-analysis, two other procedures were tested using ground reference
reflectance spectra (RG-REF) and RA-REF spectra, respectively. End-member spectra were then modeled
using the linear spectral mixture model for different ranges of α values, selected from the statistical
analysis of training points. The highest classification performances using RF classifiers were obtained
for the procedure described in this paper. The performances of our approach, with an overall accuracy
of 92.3% for plant species classes, highlight that the normal probability law procedure is relevant to
generate end members representative of the natural variability of spectral mixing into each vegetation
cover type.

However, some limitations should be noted. At the dune system scale, the cross-shore distribution
of species was in line with the location of their ecological niche. At the community scale, species
with dense, large, and well-delimited patches displayed high accuracy (from 96% to 100%), while
species with isolated or scattered patches (especially during the early stages of development) showed
a lower accuracy (from 64 to 82%). Moreover, if the overall accuracy of SPV and GDV classes reaches
100%, no proportion of the different merged species can be provided. To enhance the monitoring
and detection of fragmented and interspersed species, end member spectral libraries should be based
on hyperspectral ground data [34,63]. This requires a specific sampling design to match the scale of
ground data with that of large-scale observations [63] or to apply up-scaling procedures [61].

The second objective was to characterize the coastal dune stability patterns using sediment and
vegetation cover mapping. Results highlight a high spatial variability of the stability index, which can
be used to identify areas that may be more vulnerable to the storms. Vulnerability of coastal dunes
is often attributed to a lack of vegetation cover, which reduces stability. This was observed in the
southern part of the study area. This sector was characterized by a low vegetation cover and wide
sand bare surfaces, where the average stability index was only 0.33, whereas it reached an average of
0.37 in the central and northern part, where the vegetation cover was denser, leaving less space for the
sand. This methodological approach can become an efficient tool for researchers and coastal dune
stakeholders. For instance, the mapping of plant species and sandy areas may allow the monitoring
and detection of the different stages of blowout development and detection of the colonization of sandy
areas by pioneer species, shrubs, and Pinus maritima colonization in the transition dune. However,
for specific monitoring of small and sparse plant species, hybrid hyperspectral pixel-based and high
resolution object-oriented approaches should be considered, either with coupling of optical satellite
missions or with sensors on board UAVs, depending on the surface area to be monitored.

6. Conclusions

Recent technological and methodological advances in remote sensing and mapping tools have
greatly facilitated the monitoring of spatiotemporal distribution of vegetation at species and habitat
scales. In order to improve our understanding of coastal dune evolution, we developed an original
pixel-based classification approach to detect a large range of ground cover classes for environments
characterized by fragmented and fine-scale landscape patterns. The development of our classification
approach was based on a comprehensive multi-scale dataset combining UAV, hyperspectral ground,
and airborne data, collected along a 20-km stretch of a coastal dune system in southwest France.
The results showed high classification performances with regard to the large number of cover classes
and their low dissimilarities due to high spectral mixing levels. The high performances highlight
that the methodology used to generate the end member spectral library meets representativeness
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requirements. Additionally, the two-step approach allows us to reduce misclassified pixels. Finally,
the stability index mapping, derived from the sediment and vegetation mapping, provides large scale
insight into the vulnerability of coastal dunes. We believe that the methodology developed in this
paper can become an efficient tool for supporting coastal dune management.

Supplementary Materials: Mean ground hyperspectral reflectance spectra, training dataset, and validation
dataset are freely available at http://www.mdpi.com/2072-4292/12/14/2222/s1, The methodology used to compute
mean ground hyperspectral reflectance spectra is described Section 3.3. The methodology used to generate
training and validation points is described Sections 3.3, 3.4.1 and 3.4.2.
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