Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Puhong Duan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 30652 KiB  
Article
EUAVDet: An Efficient and Lightweight Object Detector for UAV Aerial Images with an Edge-Based Computing Platform
by Wanneng Wu, Ao Liu, Jianwen Hu, Yan Mo, Shao Xiang, Puhong Duan and Qiaokang Liang
Drones 2024, 8(6), 261; https://doi.org/10.3390/drones8060261 - 13 Jun 2024
Cited by 11 | Viewed by 3036
Abstract
Crafting an edge-based real-time object detector for unmanned aerial vehicle (UAV) aerial images is challenging because of the limited computational resources and the small size of detected objects. Existing lightweight object detectors often prioritize speed over detecting extremely small targets. To better balance [...] Read more.
Crafting an edge-based real-time object detector for unmanned aerial vehicle (UAV) aerial images is challenging because of the limited computational resources and the small size of detected objects. Existing lightweight object detectors often prioritize speed over detecting extremely small targets. To better balance this trade-off, this paper proposes an efficient and low-complexity object detector for edge computing platforms deployed on UAVs, termed EUAVDet (Edge-based UAV Object Detector). Specifically, an efficient feature downsampling module and a novel multi-kernel aggregation block are first introduced into the backbone network to retain more feature details and capture richer spatial information. Subsequently, an improved feature pyramid network with a faster ghost module is incorporated into the neck network to fuse multi-scale features with fewer parameters. Experimental evaluations on the VisDrone, SeaDronesSeeV2, and UAVDT datasets demonstrate the effectiveness and plug-and-play capability of our proposed modules. Compared with the state-of-the-art YOLOv8 detector, the proposed EUAVDet achieves better performance in nearly all the metrics, including parameters, FLOPs, mAP, and FPS. The smallest version of EUAVDet (EUAVDet-n) contains only 1.34 M parameters and achieves over 20 fps on the Jetson Nano. Our algorithm strikes a better balance between detection accuracy and inference speed, making it suitable for edge-based UAV applications. Full article
(This article belongs to the Special Issue Advances in Perception, Communications, and Control for Drones)
Show Figures

Figure 1

18 pages, 12295 KiB  
Article
Multi-Scale Superpixel-Guided Structural Profiles for Hyperspectral Image Classification
by Nanlan Wang, Xiaoyong Zeng, Yanjun Duan, Bin Deng, Yan Mo, Zhuojun Xie and Puhong Duan
Sensors 2022, 22(21), 8502; https://doi.org/10.3390/s22218502 - 4 Nov 2022
Cited by 8 | Viewed by 2826
Abstract
Hyperspectral image classification has received a lot of attention in the remote sensing field. However, most classification methods require a large number of training samples to obtain satisfactory performance. In real applications, it is difficult for users to label sufficient samples. To overcome [...] Read more.
Hyperspectral image classification has received a lot of attention in the remote sensing field. However, most classification methods require a large number of training samples to obtain satisfactory performance. In real applications, it is difficult for users to label sufficient samples. To overcome this problem, in this work, a novel multi-scale superpixel-guided structural profile method is proposed for the classification of hyperspectral images. First, the spectral number (of the original image) is reduced with an averaging fusion method. Then, multi-scale structural profiles are extracted with the help of the superpixel segmentation method. Finally, the extracted multi-scale structural profiles are fused with an unsupervised feature selection method followed by a spectral classifier to obtain classification results. Experiments on several hyperspectral datasets verify that the proposed method can produce outstanding classification effects in the case of limited samples compared to other advanced classification methods. The classification accuracies obtained by the proposed method on the Salinas dataset are increased by 43.25%, 31.34%, and 46.82% in terms of overall accuracy (OA), average accuracy (AA), and Kappa coefficient compared to recently proposed deep learning methods. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 30522 KiB  
Article
Multi-View Structural Feature Extraction for Hyperspectral Image Classification
by Nannan Liang, Puhong Duan, Haifeng Xu and Lin Cui
Remote Sens. 2022, 14(9), 1971; https://doi.org/10.3390/rs14091971 - 20 Apr 2022
Cited by 16 | Viewed by 3617
Abstract
The hyperspectral feature extraction technique is one of the most popular topics in the remote sensing community. However, most hyperspectral feature extraction methods are based on region-based local information descriptors while neglecting the correlation and dependencies of different homogeneous regions. To alleviate this [...] Read more.
The hyperspectral feature extraction technique is one of the most popular topics in the remote sensing community. However, most hyperspectral feature extraction methods are based on region-based local information descriptors while neglecting the correlation and dependencies of different homogeneous regions. To alleviate this issue, this paper proposes a multi-view structural feature extraction method to furnish a complete characterization for spectral–spatial structures of different objects, which mainly is made up of the following key steps. First, the spectral number of the original image is reduced with the minimum noise fraction (MNF) method, and a relative total variation is exploited to extract the local structural feature from the dimension reduced data. Then, with the help of a superpixel segmentation technique, the nonlocal structural features from intra-view and inter-view are constructed by considering the intra- and inter-similarities of superpixels. Finally, the local and nonlocal structural features are merged together to form the final image features for classification. Experiments on several real hyperspectral datasets indicate that the proposed method outperforms other state-of-the-art classification methods in terms of visual performance and objective results, especially when the number of training set is limited. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

17 pages, 10749 KiB  
Article
Multilevel Structure Extraction-Based Multi-Sensor Data Fusion
by Puhong Duan, Xudong Kang, Pedram Ghamisi and Yu Liu
Remote Sens. 2020, 12(24), 4034; https://doi.org/10.3390/rs12244034 - 9 Dec 2020
Cited by 13 | Viewed by 3847
Abstract
Multi-sensor data on the same area provide complementary information, which is helpful for improving the discrimination capability of classifiers. In this work, a novel multilevel structure extraction method is proposed to fuse multi-sensor data. This method is comprised of three steps: First, multilevel [...] Read more.
Multi-sensor data on the same area provide complementary information, which is helpful for improving the discrimination capability of classifiers. In this work, a novel multilevel structure extraction method is proposed to fuse multi-sensor data. This method is comprised of three steps: First, multilevel structure extraction is constructed by cascading morphological profiles and structure features, and is utilized to extract spatial information from multiple original images. Then, a low-rank model is adopted to integrate the extracted spatial information. Finally, a spectral classifier is employed to calculate class probabilities, and a maximum posteriori estimation model is used to decide the final labels. Experiments tested on three datasets including rural and urban scenes validate that the proposed approach can produce promising performance with regard to both subjective and objective qualities. Full article
(This article belongs to the Special Issue Advanced Multisensor Image Analysis Techniques for Land-Cover Mapping)
Show Figures

Graphical abstract

25 pages, 5206 KiB  
Review
Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods
by Saeed Nosratabadi, Amirhosein Mosavi, Puhong Duan, Pedram Ghamisi, Ferdinand Filip, Shahab S. Band, Uwe Reuter, Joao Gama and Amir H. Gandomi
Mathematics 2020, 8(10), 1799; https://doi.org/10.3390/math8101799 - 16 Oct 2020
Cited by 135 | Viewed by 22283
Abstract
This paper provides a comprehensive state-of-the-art investigation of the recent advances in data science in emerging economic applications. The analysis is performed on the novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, [...] Read more.
This paper provides a comprehensive state-of-the-art investigation of the recent advances in data science in emerging economic applications. The analysis is performed on the novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a broad and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, is used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which outperform other learning algorithms. It is further expected that the trends will converge toward the evolution of sophisticated hybrid deep learning models. Full article
(This article belongs to the Special Issue Advances in Machine Learning Prediction Models)
Show Figures

Figure 1

42 pages, 14445 KiB  
Review
Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics
by Amirhosein Mosavi, Yaser Faghan, Pedram Ghamisi, Puhong Duan, Sina Faizollahzadeh Ardabili, Ely Salwana and Shahab S. Band
Mathematics 2020, 8(10), 1640; https://doi.org/10.3390/math8101640 - 23 Sep 2020
Cited by 140 | Viewed by 19718
Abstract
The popularity of deep reinforcement learning (DRL) applications in economics has increased exponentially. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated dynamic economics systems. DRL is characterized by scalability with [...] Read more.
The popularity of deep reinforcement learning (DRL) applications in economics has increased exponentially. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated dynamic economics systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into the state-of-the-art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems in the presence of risk parameters and the ever-increasing uncertainties. Full article
(This article belongs to the Special Issue Recent Advances in Deep Learning)
Show Figures

Figure 1

16 pages, 38354 KiB  
Article
Component Decomposition-Based Hyperspectral Resolution Enhancement for Mineral Mapping
by Puhong Duan, Jibao Lai, Pedram Ghamisi, Xudong Kang, Robert Jackisch, Jian Kang and Richard Gloaguen
Remote Sens. 2020, 12(18), 2903; https://doi.org/10.3390/rs12182903 - 7 Sep 2020
Cited by 14 | Viewed by 3981
Abstract
Combining both spectral and spatial information with enhanced resolution provides not only elaborated qualitative information on surfacing mineralogy but also mineral interactions of abundance, mixture, and structure. This enhancement in the resolutions helps geomineralogic features such as small intrusions and mineralization become detectable. [...] Read more.
Combining both spectral and spatial information with enhanced resolution provides not only elaborated qualitative information on surfacing mineralogy but also mineral interactions of abundance, mixture, and structure. This enhancement in the resolutions helps geomineralogic features such as small intrusions and mineralization become detectable. In this paper, we investigate the potential of the resolution enhancement of hyperspectral images (HSIs) with the guidance of RGB images for mineral mapping. In more detail, a novel resolution enhancement method is proposed based on component decomposition. Inspired by the principle of the intrinsic image decomposition (IID) model, the HSI is viewed as the combination of a reflectance component and an illumination component. Based on this idea, the proposed method is comprised of several steps. First, the RGB image is transformed into the luminance component, blue-difference and red-difference chroma components (YCbCr), and the luminance channel is considered as the illumination component of the HSI with an ideal high spatial resolution. Then, the reflectance component of the ideal HSI is estimated with the downsampled HSI image and the downsampled luminance channel. Finally, the HSI with high resolution can be reconstructed by utilizing the obtained illumination and the reflectance components. Experimental results verify that the fused results can successfully achieve mineral mapping, producing better results qualitatively and quantitatively over single sensor data. Full article
Show Figures

Graphical abstract

Back to TopTop