Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Petar Valchanov

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8239 KiB  
Article
3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom
by Petar Valchanov, Nikolay Dukov, Stoyan Pavlov, Andreas Kontny and Tsanka Dikova
Gels 2023, 9(7), 547; https://doi.org/10.3390/gels9070547 - 5 Jul 2023
Cited by 1 | Viewed by 2055
Abstract
Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for [...] Read more.
Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for 3D printing that has biological and radiological properties similar to those of the natural bone and to develop protocols for their histological and radiological analysis. We synthesized a hydrogel based on alginate, methylcellulose, and laponite, then 3D printed it into a series of complex bioscaffolds. The scaffolds were scanned with CT and CBCT scanners and exported as DICOM datasets, then cut into histological slides and stained using standard histological protocols. From the DICOM datasets, the average value of the voxels in Hounsfield Units (HU) was calculated and compared with natural trabecular bone. In the histological sections, we tested the effect of standard histological stains on the hydrogel matrix in the context of future cytological and histological analysis. The results confirmed that an alginate/methylcellulose/laponite-based composite hydrogel can be used for 3D printing of complex high fidelity three-dimensional scaffolds. This opens an avenue for the development of dynamic biological physical phantoms for bone tissue engineering and the development of new CT-based imaging algorithms for the needs of radiology and radiation therapy. Full article
(This article belongs to the Special Issue Advances in Functional Gel)
Show Figures

Graphical abstract

11 pages, 2371 KiB  
Article
Management of Complex Acetabular Fractures by Using 3D Printed Models
by Stoyan Ivanov, Petar Valchanov, Stoyan Hristov, Deyan Veselinov and Boyko Gueorguiev
Medicina 2022, 58(12), 1854; https://doi.org/10.3390/medicina58121854 - 15 Dec 2022
Cited by 8 | Viewed by 3391
Abstract
Background and Objectives: Using 3D printed models in orthopaedics and traumatology contributes to a better understanding of injury patterns regarding surgical approaches, reduction techniques, and fracture fixation methods. The aim of this study is to evaluate the effectiveness of a novel technique [...] Read more.
Background and Objectives: Using 3D printed models in orthopaedics and traumatology contributes to a better understanding of injury patterns regarding surgical approaches, reduction techniques, and fracture fixation methods. The aim of this study is to evaluate the effectiveness of a novel technique implementing 3D printed models to facilitate the optimal preoperative planning of the surgical treatment of complex acetabular fractures. Materials and Methods: Patients with complex acetabular fractures were assigned to two groups: (1) conventional group (n = 12) and (2) 3D printed group (n = 10). Both groups included participants with either a posterior column plus posterior wall fracture, a transverse plus posterior wall fracture, or a both-column acetabular fracture. Datasets from CT scanning were segmented and converted to STL format, with separated bones and fragments for 3D printing in different colors. Comparison between the two groups was performed in terms of quality of fracture reduction (good: equal to, or less than 2 mm displacement, and fair: larger than 2 mm displacement), functional assessment, operative time, blood loss, and number of intraoperative x-rays. Results: A significant decrease in operative time, blood loss, and number of intraoperative x-rays was registered in the 3D printed group versus the conventional one (p < 0.01), with 80% of the patients in the former having good fracture reduction and 20% having fair reduction. In contrast, 50% of the patients in the conventional group had good reduction and 50% had fair reduction. The functional score at 18-month follow-up was better for patients in the 3D printed group. Conclusions: The 3D printing technique can be considered a highly efficient and patient-specific approach for management of complex acetabular fractures, helping to restore patient′s individual anatomy after surgery. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

Back to TopTop