Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Pascal Puech ORCID = 0000-0002-9863-0128

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1601 KiB  
Article
Effect of Nutritional Deprivation after Sleeve Gastrectomy on Bone Mass, Periostin, Sclerostin and Semaphorin 4D: A Two-Year Longitudinal Study
by Laurent Maïmoun, Safa Aouinti, Marion Puech, Patrick Lefebvre, Mélanie Deloze, Pascal de Santa Barbara, Jean-Paul Cristol, Séverine Brabant, Thomas Gautier, Marius Nedelcu, Eric Renard, Marie-Christine Picot, Denis Mariano-Goulart and David Nocca
Nutrients 2023, 15(20), 4310; https://doi.org/10.3390/nu15204310 - 10 Oct 2023
Cited by 3 | Viewed by 1736
Abstract
Bariatric surgery induces bone loss, but the exact mechanisms by which this process occurs are not fully known. The aims of this 2-year longitudinal study were to (i) investigate the changes in areal bone mineral density (aBMD) and bone turnover markers following sleeve [...] Read more.
Bariatric surgery induces bone loss, but the exact mechanisms by which this process occurs are not fully known. The aims of this 2-year longitudinal study were to (i) investigate the changes in areal bone mineral density (aBMD) and bone turnover markers following sleeve gastrectomy (SG) and (ii) determine the parameters associated with the aBMD variations. Bone turnover markers, sclerostin, periostin and semaphorin 4D were assessed before and 1, 12 and 24 months after SG, and aBMD was determined by DXA at baseline and after 12 and 24 months in 83 patients with obesity. Bone turnover increased from 1 month, peaked at 12 months and remained elevated at 24 months. Periostin and sclerostin presented only modest increases at 1 month, whereas semaphorin 4D showed increases only at 12 and 24 months. A significant aBMD decrease was observed only at total hip regions at 12 and 24 months. This demineralisation was mainly related to body weight loss. In summary, reduced aBMD was observed after SG in the hip region (mechanical-loading bone sites) due to an increase in bone turnover in favour of bone resorption. Periostin, sclerostin and semaphorin 4D levels varied after SG, showing different time lags, but contrary to weight loss, these biological parameters did not seem to be directly implicated in the skeletal deterioration. Full article
Show Figures

Figure 1

16 pages, 1027 KiB  
Article
Changes in Lean Tissue Mass, Fat Mass, Biological Parameters and Resting Energy Expenditure over 24 Months Following Sleeve Gastrectomy
by Laurent Maïmoun, Safa Aouinti, Marion Puech, Patrick Lefebvre, Melanie Deloze, Pascal de Santa Barbara, Eric Renard, Jean-Paul Christol, Justine Myzia, Marie-Christine Picot, Denis Mariano-Goulart and David Nocca
Nutrients 2023, 15(5), 1201; https://doi.org/10.3390/nu15051201 - 27 Feb 2023
Cited by 5 | Viewed by 2477
Abstract
Sleeve gastrectomy (SG) induces weight loss but its effects on body composition (BC) are less well known. The aims of this longitudinal study were to analyse the BC changes from the acute phase up to weight stabilization following SG. Variations in the biological [...] Read more.
Sleeve gastrectomy (SG) induces weight loss but its effects on body composition (BC) are less well known. The aims of this longitudinal study were to analyse the BC changes from the acute phase up to weight stabilization following SG. Variations in the biological parameters related to glucose, lipids, inflammation, and resting energy expenditure (REE) were concomitantly analysed. Fat mass (FM), lean tissue mass (LTM), and visceral adipose tissue (VAT) were determined by dual-energy X-ray absorptiometry in 83 obese patients (75.9% women) before SG and 1, 12 and 24 months later. After 1 month, LTM and FM losses were comparable, whereas at 12 months the loss of FM exceeded that of LTM. Over this period, VAT also decreased significantly, biological parameters became normalized, and REE was reduced. For most of the BC, biological and metabolic parameters, no substantial variation was demonstrated beyond 12 months. In summary, SG induced a modification in BC changes during the first 12 months following SG. Although the significant LTM loss was not associated with an increase in sarcopenia prevalence, the preservation of LTM might have limited the reduction in REE, which is a longer-term weight-regain criterion. Full article
Show Figures

Figure 1

19 pages, 3725 KiB  
Article
The X-ray, Raman and TEM Signatures of Cellulose-Derived Carbons Explained
by Petros Kasaira Mubari, Théotime Beguerie, Marc Monthioux, Elsa Weiss-Hortala, Ange Nzihou and Pascal Puech
C 2022, 8(1), 4; https://doi.org/10.3390/c8010004 - 3 Jan 2022
Cited by 28 | Viewed by 6097
Abstract
Structural properties of carbonized cellulose were explored to conjugate the outcomes from various characterization techniques, namely X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy. All these techniques have evidenced the formation of graphene stacks with a size distribution. Cellulose carbonized at [...] Read more.
Structural properties of carbonized cellulose were explored to conjugate the outcomes from various characterization techniques, namely X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy. All these techniques have evidenced the formation of graphene stacks with a size distribution. Cellulose carbonized at 1000 and 1800 °C at a heating rate of 2 °C/min showed meaningful differences in Raman spectroscopy, whereas in XRD, the differences were not well pronounced, which implies that the crystallite sizes calculated by each technique have different significations. In the XRD patterns, the origin of a specific feature at a low scattering angle commonly reported in the literature but poorly explained so far, was identified. The different approaches used in this study were congruous in explaining the observations that were made on the cellulose-derived carbon samples. The remnants of the basic structural unit (BSU) are developed during primary carbonization. Small graphene-based crystallites inherited from the BSUs, which formerly developed during primary carbonization, were found to coexist with larger ones. Even if the three techniques give information on the average size of graphenic domains, they do not see the same characteristics of the domains; hence, they are not identical, nor contradictory but complementary. The arguments developed in the work to explain which characteristics are deduced from the signal obtained by each of the three characterization techniques relate to physics phenomena; hence, they are quite general and, therefore, are valid for all kind of graphenic materials. Full article
Show Figures

Figure 1

24 pages, 7927 KiB  
Review
Progress on Diamane and Diamanoid Thin Film Pressureless Synthesis
by Fabrice Piazza, Marc Monthioux, Pascal Puech, Iann C. Gerber and Kathleen Gough
C 2021, 7(1), 9; https://doi.org/10.3390/c7010009 - 23 Jan 2021
Cited by 17 | Viewed by 5108
Abstract
Nanometer-thick and crystalline sp3-bonded carbon sheets are promising new wide band-gap semiconducting materials for electronics, photonics, and medical devices. Diamane was prepared from the exposure of bi-layer graphene to hydrogen radicals produced by the hot-filament process at low pressure and temperature. [...] Read more.
Nanometer-thick and crystalline sp3-bonded carbon sheets are promising new wide band-gap semiconducting materials for electronics, photonics, and medical devices. Diamane was prepared from the exposure of bi-layer graphene to hydrogen radicals produced by the hot-filament process at low pressure and temperature. A sharp sp3-bonded carbon stretching mode was observed in ultraviolet Raman spectra at around 1344–1367 cm−1 while no sp2-bonded carbon peak was simultaneously detected. By replacing bi-layer graphene with few-layer graphene, diamanoid/graphene hybrids were formed from the partial conversion of few-layer graphene, due to the prevalent Bernal stacking sequence. Raman spectroscopy, electron diffraction, and Density Functional Theory calculations show that partial conversion generates twisted bi-layer graphene located at the interface between the upper diamanoid domain and the non-converted graphenic domain underneath. Carbon-hydrogen bonding in the basal plane of hydrogenated few-layer graphene, where carbon is bonded to a single hydrogen over an area of 150 μm2, was directly evidenced by Fourier transform infrared microscopy and the actual full hydrogenation of diamane was supported by first-principle calculations. Those results open the door to large-scale production of diamane, diamanoids, and diamanoid/graphene hybrids. Full article
(This article belongs to the Special Issue 2D Ultrathin Carbon Films)
Show Figures

Graphical abstract

20 pages, 3077 KiB  
Article
Analyzing the Raman Spectra of Graphenic Carbon Materials from Kerogens to Nanotubes: What Type of Information Can Be Extracted from Defect Bands?
by Pascal Puech, Mariem Kandara, Germercy Paredes, Ludovic Moulin, Elsa Weiss-Hortala, Anirban Kundu, Nicolas Ratel-Ramond, Jérémie-Marie Plewa, Roland Pellenq and Marc Monthioux
C 2019, 5(4), 69; https://doi.org/10.3390/c5040069 - 1 Nov 2019
Cited by 142 | Viewed by 12256
Abstract
Considering typical spectra of a broad range of carbonaceous materials from gas-shale to nanotubes, various ways by which defects show up in Raman spectra are exampled and discussed. The position, resonance behavior, and linewidth of both the D and G bands are compared, [...] Read more.
Considering typical spectra of a broad range of carbonaceous materials from gas-shale to nanotubes, various ways by which defects show up in Raman spectra are exampled and discussed. The position, resonance behavior, and linewidth of both the D and G bands are compared, even if in some cases obtaining accurate information on the materials from the fitting parameters is a difficult task. As a matter of fact, even if a full picture is unreachable, defining parameter trends is one acceptable option. Two ways to determine the linewidth, either graphically and or by fitting are proposed in order to be able to compare literature data. The relationship between the crystallite size obtained from the linewidth and from X-ray diffraction, which is complementary to the Tuinstra and Koenig law, is examined. We show that a single approach is not possible unless modeling is performed and therefore that analysis of Raman spectra should be adapted to the specificities of each sample series, i.e., a minimum of knowledge about the materials is always required. Full article
(This article belongs to the Special Issue Characterization of Disorder in Carbons)
Show Figures

Graphical abstract

Back to TopTop