Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Authors = Narendra N. Khanna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4635 KiB  
Article
Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data
by Mrinalini Bhagawati, Sudip Paul, Laura Mantella, Amer M. Johri, Siddharth Gupta, John R. Laird, Inder M. Singh, Narendra N. Khanna, Mustafa Al-Maini, Esma R. Isenovic, Ekta Tiwari, Rajesh Singh, Andrew Nicolaides, Luca Saba, Vinod Anand and Jasjit S. Suri
Diagnostics 2024, 14(17), 1894; https://doi.org/10.3390/diagnostics14171894 - 28 Aug 2024
Cited by 4 | Viewed by 2717
Abstract
Background: The risk of cardiovascular disease (CVD) has traditionally been predicted via the assessment of carotid plaques. In the proposed study, AtheroEdge™ 3.0HDL (AtheroPoint™, Roseville, CA, USA) was designed to demonstrate how well the features obtained from carotid plaques determine the risk [...] Read more.
Background: The risk of cardiovascular disease (CVD) has traditionally been predicted via the assessment of carotid plaques. In the proposed study, AtheroEdge™ 3.0HDL (AtheroPoint™, Roseville, CA, USA) was designed to demonstrate how well the features obtained from carotid plaques determine the risk of CVD. We hypothesize that hybrid deep learning (HDL) will outperform unidirectional deep learning, bidirectional deep learning, and machine learning (ML) paradigms. Methodology: 500 people who had undergone targeted carotid B-mode ultrasonography and coronary angiography were included in the proposed study. ML feature selection was carried out using three different methods, namely principal component analysis (PCA) pooling, the chi-square test (CST), and the random forest regression (RFR) test. The unidirectional and bidirectional deep learning models were trained, and then six types of novel HDL-based models were designed for CVD risk stratification. The AtheroEdge™ 3.0HDL was scientifically validated using seen and unseen datasets while the reliability and statistical tests were conducted using CST along with p-value significance. The performance of AtheroEdge™ 3.0HDL was evaluated by measuring the p-value and area-under-the-curve for both seen and unseen data. Results: The HDL system showed an improvement of 30.20% (0.954 vs. 0.702) over the ML system using the seen datasets. The ML feature extraction analysis showed 70% of common features among all three methods. The generalization of AtheroEdge™ 3.0HDL showed less than 1% (p-value < 0.001) difference between seen and unseen data, complying with regulatory standards. Conclusions: The hypothesis for AtheroEdge™ 3.0HDL was scientifically validated, and the model was tested for reliability and stability and is further adaptable clinically. Full article
(This article belongs to the Special Issue Artificial Intelligence in Cardiovascular Diseases (2024))
Show Figures

Figure 1

54 pages, 9111 KiB  
Review
Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look
by Vandana Kumari, Naresh Kumar, Sampath Kumar K, Ashish Kumar, Sanagala S. Skandha, Sanjay Saxena, Narendra N. Khanna, John R. Laird, Narpinder Singh, Mostafa M. Fouda, Luca Saba, Rajesh Singh and Jasjit S. Suri
J. Cardiovasc. Dev. Dis. 2023, 10(12), 485; https://doi.org/10.3390/jcdd10120485 - 4 Dec 2023
Cited by 10 | Viewed by 3930
Abstract
Background and Motivation: Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In [...] Read more.
Background and Motivation: Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. Methods: Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. Findings and Conclusions: UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach. Full article
Show Figures

Figure 1

32 pages, 11880 KiB  
Article
DermAI 1.0: A Robust, Generalized, and Novel Attention-Enabled Ensemble-Based Transfer Learning Paradigm for Multiclass Classification of Skin Lesion Images
by Prabhav Sanga, Jaskaran Singh, Arun Kumar Dubey, Narendra N. Khanna, John R. Laird, Gavino Faa, Inder M. Singh, Georgios Tsoulfas, Mannudeep K. Kalra, Jagjit S. Teji, Mustafa Al-Maini, Vijay Rathore, Vikas Agarwal, Puneet Ahluwalia, Mostafa M. Fouda, Luca Saba and Jasjit S. Suri
Diagnostics 2023, 13(19), 3159; https://doi.org/10.3390/diagnostics13193159 - 9 Oct 2023
Cited by 11 | Viewed by 2869
Abstract
Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, [...] Read more.
Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models’ performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions. Full article
Show Figures

Figure 1

49 pages, 34748 KiB  
Article
Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based Lung Segmentation: A Data Augmentation and Balancing Framework
by Arun Kumar Dubey, Gian Luca Chabert, Alessandro Carriero, Alessio Pasche, Pietro S. C. Danna, Sushant Agarwal, Lopamudra Mohanty, Nillmani, Neeraj Sharma, Sarita Yadav, Achin Jain, Ashish Kumar, Mannudeep K. Kalra, David W. Sobel, John R. Laird, Inder M. Singh, Narpinder Singh, George Tsoulfas, Mostafa M. Fouda, Azra Alizad, George D. Kitas, Narendra N. Khanna, Klaudija Viskovic, Melita Kukuljan, Mustafa Al-Maini, Ayman El-Baz, Luca Saba and Jasjit S. Suriadd Show full author list remove Hide full author list
Diagnostics 2023, 13(11), 1954; https://doi.org/10.3390/diagnostics13111954 - 2 Jun 2023
Cited by 31 | Viewed by 4960
Abstract
Background and motivation: Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are [...] Read more.
Background and motivation: Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. Methodology: The system consists of a cascade of quality control, ResNet–UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL’s. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts—Croatia (80 COVID) and Italy (72 COVID and 30 controls)—leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. Results: Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. Conclusion: EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses. Full article
(This article belongs to the Special Issue Diagnostic AI and Viral or Bacterial Infection)
Show Figures

Figure 1

38 pages, 6429 KiB  
Article
Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment
by Narendra N. Khanna, Mahesh A. Maindarkar, Vijay Viswanathan, Jose Fernandes E Fernandes, Sudip Paul, Mrinalini Bhagawati, Puneet Ahluwalia, Zoltan Ruzsa, Aditya Sharma, Raghu Kolluri, Inder M. Singh, John R. Laird, Mostafa Fatemi, Azra Alizad, Luca Saba, Vikas Agarwal, Aman Sharma, Jagjit S. Teji, Mustafa Al-Maini, Vijay Rathore, Subbaram Naidu, Kiera Liblik, Amer M. Johri, Monika Turk, Lopamudra Mohanty, David W. Sobel, Martin Miner, Klaudija Viskovic, George Tsoulfas, Athanasios D. Protogerou, George D. Kitas, Mostafa M. Fouda, Seemant Chaturvedi, Mannudeep K. Kalra and Jasjit S. Suriadd Show full author list remove Hide full author list
Healthcare 2022, 10(12), 2493; https://doi.org/10.3390/healthcare10122493 - 9 Dec 2022
Cited by 161 | Viewed by 22614
Abstract
Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. [...] Read more.
Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals. Full article
Show Figures

Figure 1

33 pages, 6892 KiB  
Review
Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study
by Narendra N. Khanna, Mahesh A. Maindarkar, Vijay Viswanathan, Anudeep Puvvula, Sudip Paul, Mrinalini Bhagawati, Puneet Ahluwalia, Zoltan Ruzsa, Aditya Sharma, Raghu Kolluri, Padukone R. Krishnan, Inder M. Singh, John R. Laird, Mostafa Fatemi, Azra Alizad, Surinder K. Dhanjil, Luca Saba, Antonella Balestrieri, Gavino Faa, Kosmas I. Paraskevas, Durga Prasanna Misra, Vikas Agarwal, Aman Sharma, Jagjit S. Teji, Mustafa Al-Maini, Andrew Nicolaides, Vijay Rathore, Subbaram Naidu, Kiera Liblik, Amer M. Johri, Monika Turk, David W. Sobel, Martin Miner, Klaudija Viskovic, George Tsoulfas, Athanasios D. Protogerou, Sophie Mavrogeni, George D. Kitas, Mostafa M. Fouda, Mannudeep K. Kalra and Jasjit S. Suriadd Show full author list remove Hide full author list
J. Clin. Med. 2022, 11(22), 6844; https://doi.org/10.3390/jcm11226844 - 19 Nov 2022
Cited by 29 | Viewed by 6628
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained [...] Read more.
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients. Full article
Show Figures

Figure 1

32 pages, 12552 KiB  
Article
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans
by Nillmani, Neeraj Sharma, Luca Saba, Narendra N. Khanna, Mannudeep K. Kalra, Mostafa M. Fouda and Jasjit S. Suri
Diagnostics 2022, 12(9), 2132; https://doi.org/10.3390/diagnostics12092132 - 2 Sep 2022
Cited by 66 | Viewed by 11642
Abstract
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our [...] Read more.
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. Method: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. Results: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. Conclusion: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

51 pages, 15712 KiB  
Review
Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report
by Narendra N. Khanna, Mahesh Maindarkar, Anudeep Puvvula, Sudip Paul, Mrinalini Bhagawati, Puneet Ahluwalia, Zoltan Ruzsa, Aditya Sharma, Smiksha Munjral, Raghu Kolluri, Padukone R. Krishnan, Inder M. Singh, John R. Laird, Mostafa Fatemi, Azra Alizad, Surinder K. Dhanjil, Luca Saba, Antonella Balestrieri, Gavino Faa, Kosmas I. Paraskevas, Durga Prasanna Misra, Vikas Agarwal, Aman Sharma, Jagjit Teji, Mustafa Al-Maini, Andrew Nicolaides, Vijay Rathore, Subbaram Naidu, Kiera Liblik, Amer M. Johri, Monika Turk, David W. Sobel, Gyan Pareek, Martin Miner, Klaudija Viskovic, George Tsoulfas, Athanasios D. Protogerou, Sophie Mavrogeni, George D. Kitas, Mostafa M. Fouda, Manudeep K. Kalra and Jasjit S. Suriadd Show full author list remove Hide full author list
J. Cardiovasc. Dev. Dis. 2022, 9(8), 268; https://doi.org/10.3390/jcdd9080268 - 15 Aug 2022
Cited by 23 | Viewed by 5638
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the [...] Read more.
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate. Full article
Show Figures

Figure 1

47 pages, 15751 KiB  
Review
Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson’s Disease Affected by COVID-19: A Narrative Review
by Jasjit S. Suri, Mahesh A. Maindarkar, Sudip Paul, Puneet Ahluwalia, Mrinalini Bhagawati, Luca Saba, Gavino Faa, Sanjay Saxena, Inder M. Singh, Paramjit S. Chadha, Monika Turk, Amer Johri, Narendra N. Khanna, Klaudija Viskovic, Sofia Mavrogeni, John R. Laird, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanase D. Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Raghu Kolluri, Jagjit S. Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Meyypan Sockalingam, Ajit Saxena, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Padukode R. Krishnan, Tomaz Omerzu, Subbaram Naidu, Andrew Nicolaides, Kosmas I. Paraskevas, Mannudeep Kalra, Zoltán Ruzsa and Mostafa M. Foudaadd Show full author list remove Hide full author list
Diagnostics 2022, 12(7), 1543; https://doi.org/10.3390/diagnostics12071543 - 24 Jun 2022
Cited by 15 | Viewed by 7436
Abstract
Background and Motivation: Parkinson’s disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to [...] Read more.
Background and Motivation: Parkinson’s disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19. Full article
(This article belongs to the Special Issue Deep Learning in Neurodegenerative Disease Diagnostics)
Show Figures

Figure 1

41 pages, 25585 KiB  
Article
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
by Jasjit S. Suri, Sushant Agarwal, Gian Luca Chabert, Alessandro Carriero, Alessio Paschè, Pietro S. C. Danna, Luca Saba, Armin Mehmedović, Gavino Faa, Inder M. Singh, Monika Turk, Paramjit S. Chadha, Amer M. Johri, Narendra N. Khanna, Sophie Mavrogeni, John R. Laird, Gyan Pareek, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanasios D. Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Jagjit S. Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Andrew Nicolaides, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Pudukode R. Krishnan, Ferenc Nagy, Zoltan Ruzsa, Mostafa M. Fouda, Subbaram Naidu, Klaudija Viskovic and Mannudeep K. Kalraadd Show full author list remove Hide full author list
Diagnostics 2022, 12(6), 1482; https://doi.org/10.3390/diagnostics12061482 - 16 Jun 2022
Cited by 48 | Viewed by 4814
Abstract
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. [...] Read more.
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

34 pages, 51506 KiB  
Article
COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
by Jasjit S. Suri, Sushant Agarwal, Gian Luca Chabert, Alessandro Carriero, Alessio Paschè, Pietro S. C. Danna, Luca Saba, Armin Mehmedović, Gavino Faa, Inder M. Singh, Monika Turk, Paramjit S. Chadha, Amer M. Johri, Narendra N. Khanna, Sophie Mavrogeni, John R. Laird, Gyan Pareek, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanasios D. Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Jagjit S. Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Andrew Nicolaides, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Pudukode R. Krishnan, Ferenc Nagy, Zoltan Ruzsa, Mostafa M. Fouda, Subbaram Naidu, Klaudija Viskovic and Manudeep K. Kalraadd Show full author list remove Hide full author list
Diagnostics 2022, 12(5), 1283; https://doi.org/10.3390/diagnostics12051283 - 21 May 2022
Cited by 21 | Viewed by 4707
Abstract
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung [...] Read more.
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann–Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

32 pages, 5747 KiB  
Review
Cardiovascular/Stroke Risk Assessment in Patients with Erectile Dysfunction—A Role of Carotid Wall Arterial Imaging and Plaque Tissue Characterization Using Artificial Intelligence Paradigm: A Narrative Review
by Narendra N. Khanna, Mahesh Maindarkar, Ajit Saxena, Puneet Ahluwalia, Sudip Paul, Saurabh K. Srivastava, Elisa Cuadrado-Godia, Aditya Sharma, Tomaz Omerzu, Luca Saba, Sophie Mavrogeni, Monika Turk, John R. Laird, George D. Kitas, Mostafa Fatemi, Al Baha Barqawi, Martin Miner, Inder M. Singh, Amer Johri, Mannudeep M. Kalra, Vikas Agarwal, Kosmas I. Paraskevas, Jagjit S. Teji, Mostafa M. Fouda, Gyan Pareek and Jasjit S. Suriadd Show full author list remove Hide full author list
Diagnostics 2022, 12(5), 1249; https://doi.org/10.3390/diagnostics12051249 - 17 May 2022
Cited by 16 | Viewed by 6807
Abstract
Purpose: The role of erectile dysfunction (ED) has recently shown an association with the risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease (CTAD), a [...] Read more.
Purpose: The role of erectile dysfunction (ED) has recently shown an association with the risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease (CTAD), a surrogate biomarker for CHD. The proposed study emphasizes artificial intelligence-based frameworks such as machine learning (ML) and deep learning (DL) that can accurately predict the severity of CVD/stroke risk using carotid wall arterial imaging in ED patients. Methods: Using the PRISMA model, 231 of the best studies were selected. The proposed study mainly consists of two components: (i) the pathophysiology of ED and its link with coronary artery disease (COAD) and CHD in the ED framework and (ii) the ultrasonic-image morphological changes in the carotid arterial walls by quantifying the wall parameters and the characterization of the wall tissue by adapting the ML/DL-based methods, both for the prediction of the severity of CVD risk. The proposed study analyzes the hypothesis that ML/DL can lead to an accurate and early diagnosis of the CVD/stroke risk in ED patients. Our finding suggests that the routine ED patient practice can be amended for ML/DL-based CVD/stroke risk assessment using carotid wall arterial imaging leading to fast, reliable, and accurate CVD/stroke risk stratification. Summary: We conclude that ML and DL methods are very powerful tools for the characterization of CVD/stroke in patients with varying ED conditions. We anticipate a rapid growth of these tools for early and better CVD/stroke risk management in ED patients. Full article
(This article belongs to the Special Issue Artificial Intelligence in Stroke Imaging)
Show Figures

Figure 1

39 pages, 6776 KiB  
Review
Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
by Smiksha Munjral, Mahesh Maindarkar, Puneet Ahluwalia, Anudeep Puvvula, Ankush Jamthikar, Tanay Jujaray, Neha Suri, Sudip Paul, Rajesh Pathak, Luca Saba, Renoh Johnson Chalakkal, Suneet Gupta, Gavino Faa, Inder M. Singh, Paramjit S. Chadha, Monika Turk, Amer M. Johri, Narendra N. Khanna, Klaudija Viskovic, Sophie Mavrogeni, John R. Laird, Gyan Pareek, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanasios Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Raghu Kolluri, Jagjit Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Meyypan Sockalingam, Ajit Saxena, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Vijay Viswanathan, Padukode R. Krishnan, Tomaz Omerzu, Subbaram Naidu, Andrew Nicolaides, Mostafa M. Fouda and Jasjit S. Suriadd Show full author list remove Hide full author list
Diagnostics 2022, 12(5), 1234; https://doi.org/10.3390/diagnostics12051234 - 14 May 2022
Cited by 24 | Viewed by 7994
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, [...] Read more.
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework. Full article
Show Figures

Figure 1

30 pages, 3307 KiB  
Systematic Review
Cardiovascular/Stroke Risk Stratification in Parkinson’s Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review
by Jasjit S. Suri, Sudip Paul, Maheshrao A. Maindarkar, Anudeep Puvvula, Sanjay Saxena, Luca Saba, Monika Turk, John R. Laird, Narendra N. Khanna, Klaudija Viskovic, Inder M. Singh, Mannudeep Kalra, Padukode R. Krishnan, Amer Johri and Kosmas I. Paraskevas
Metabolites 2022, 12(4), 312; https://doi.org/10.3390/metabo12040312 - 31 Mar 2022
Cited by 38 | Viewed by 7614
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, [...] Read more.
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework. Full article
(This article belongs to the Special Issue Exploring Emerging Novel Metabolic Biomarkers of Atherosclerosis)
Show Figures

Figure 1

47 pages, 8936 KiB  
Review
A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review
by Jasjit S. Suri, Mrinalini Bhagawati, Sudip Paul, Athanasios D. Protogerou, Petros P. Sfikakis, George D. Kitas, Narendra N. Khanna, Zoltan Ruzsa, Aditya M. Sharma, Sanjay Saxena, Gavino Faa, John R. Laird, Amer M. Johri, Manudeep K. Kalra, Kosmas I. Paraskevas and Luca Saba
Diagnostics 2022, 12(3), 722; https://doi.org/10.3390/diagnostics12030722 - 16 Mar 2022
Cited by 42 | Viewed by 5804
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the [...] Read more.
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks. Full article
(This article belongs to the Special Issue Lesion Detection and Analysis Using Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop