Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Muniruddin Ahmed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9539 KiB  
Review
An Overview of Antimicrobial Stewardship Optimization: The Use of Antibiotics in Humans and Animals to Prevent Resistance
by Md. Mominur Rahman, Mst. Afroza Alam Tumpa, Mehrukh Zehravi, Md. Taslim Sarker, Md. Yamin, Md. Rezaul Islam, Md. Harun-Or-Rashid, Muniruddin Ahmed, Sarker Ramproshad, Banani Mondal, Abhijit Dey, Fouad Damiri, Mohammed Berrada, Md. Habibur Rahman and Simona Cavalu
Antibiotics 2022, 11(5), 667; https://doi.org/10.3390/antibiotics11050667 - 16 May 2022
Cited by 77 | Viewed by 13210
Abstract
Antimicrobials are a type of agent widely used to prevent various microbial infections in humans and animals. Antimicrobial resistance is a major cause of clinical antimicrobial therapy failure, and it has become a major public health concern around the world. Increasing the development [...] Read more.
Antimicrobials are a type of agent widely used to prevent various microbial infections in humans and animals. Antimicrobial resistance is a major cause of clinical antimicrobial therapy failure, and it has become a major public health concern around the world. Increasing the development of multiple antimicrobials has become available for humans and animals with no appropriate guidance. As a result, inappropriate use of antimicrobials has significantly produced antimicrobial resistance. However, an increasing number of infections such as sepsis are untreatable due to this antimicrobial resistance. In either case, life-saving drugs are rendered ineffective in most cases. The actual causes of antimicrobial resistance are complex and versatile. A lack of adequate health services, unoptimized use of antimicrobials in humans and animals, poor water and sanitation systems, wide gaps in access and research and development in healthcare technologies, and environmental pollution have vital impacts on antimicrobial resistance. This current review will highlight the natural history and basics of the development of antimicrobials, the relationship between antimicrobial use in humans and antimicrobial use in animals, the simplistic pathways, and mechanisms of antimicrobial resistance, and how to control the spread of this resistance. Full article
(This article belongs to the Special Issue Optimization of Antimicrobial Stewardship in Public Health)
Show Figures

Figure 1

37 pages, 3496 KiB  
Review
The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review
by Md. Mominur Rahman, Md. Rezaul Islam, Sheikh Shohag, Md. Emon Hossain, Md. Saidur Rahaman, Fahadul Islam, Muniruddin Ahmed, Saikat Mitra, Mayeen Uddin Khandaker, Abubakr M. Idris, Kumarappan Chidambaram, Talha Bin Emran and Simona Cavalu
Molecules 2022, 27(5), 1713; https://doi.org/10.3390/molecules27051713 - 6 Mar 2022
Cited by 132 | Viewed by 15900
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes [...] Read more.
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity. Full article
(This article belongs to the Special Issue Natural Compounds: An Antidiabetic and Anticancer Agents)
Show Figures

Figure 1

42 pages, 17546 KiB  
Review
Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives
by Md. Mominur Rahman, Md. Rezaul Islam, Mohammad Touhidul Islam, Md. Harun-Or-Rashid, Mahfuzul Islam, Sabirin Abdullah, Mohammad Borhan Uddin, Sumit Das, Md. Saidur Rahaman, Muniruddin Ahmed, Fahad A. Alhumaydhi, Talha Bin Emran, Amany Abdel-Rahman Mohamed, Mohammad Rashed Iqbal Faruque, Mayeen Uddin Khandaker and Gomaa Mostafa-Hedeab
Biology 2022, 11(1), 147; https://doi.org/10.3390/biology11010147 - 17 Jan 2022
Cited by 58 | Viewed by 20689
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial [...] Read more.
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson’s disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field. Full article
Show Figures

Figure 1

36 pages, 5632 KiB  
Review
Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects
by Md. Mominur Rahman, Md. Saidur Rahaman, Md. Rezaul Islam, Firoza Rahman, Faria Mannan Mithi, Taha Alqahtani, Mohannad A. Almikhlafi, Samia Qasem Alghamdi, Abdullah S Alruwaili, Md. Sohel Hossain, Muniruddin Ahmed, Rajib Das, Talha Bin Emran and Md. Sahab Uddin
Molecules 2022, 27(1), 233; https://doi.org/10.3390/molecules27010233 - 30 Dec 2021
Cited by 554 | Viewed by 24559
Abstract
Inflammation is a natural protective mechanism that occurs when the body’s tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds [...] Read more.
Inflammation is a natural protective mechanism that occurs when the body’s tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators’ activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer’s disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases. Full article
Show Figures

Figure 1

35 pages, 1222 KiB  
Review
Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties
by Md. Mominur Rahman, Md. Saidur Rahaman, Md. Rezaul Islam, Md. Emon Hossain, Faria Mannan Mithi, Muniruddin Ahmed, Marianela Saldías, Esra Küpeli Akkol and Eduardo Sobarzo-Sánchez
Antibiotics 2021, 10(9), 1076; https://doi.org/10.3390/antibiotics10091076 - 6 Sep 2021
Cited by 69 | Viewed by 8207
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic [...] Read more.
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes’ antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Phytocomplexes and Isolated Compounds)
Show Figures

Graphical abstract

5 pages, 196 KiB  
Review
Bacterial Resistance in Pneumonia in Developing Countries—A Role for Iron Chelation
by Sufia Islam, Mohammod Jobayer Chisti, Muniruddin Ahmed, Nafiza Anwar and Christian Lehmann
Trop. Med. Infect. Dis. 2019, 4(2), 59; https://doi.org/10.3390/tropicalmed4020059 - 10 Apr 2019
Cited by 2 | Viewed by 3029
Abstract
Pneumonia represents one of the major infectious diseases in developing countries and is associated with high mortality, in particular in children under the age of five. The main causative bacterial agents are Streptococcus pneumoniae and Haemophilus influenzae type B, accounting for 33% and [...] Read more.
Pneumonia represents one of the major infectious diseases in developing countries and is associated with high mortality, in particular in children under the age of five. The main causative bacterial agents are Streptococcus pneumoniae and Haemophilus influenzae type B, accounting for 33% and 16%, respectively, of the mortality in under-fives. Iron modulates the immune response in infectious diseases and increased iron levels can lead to complications such as sepsis and multiorgan failure. This review will look into the use of iron chelators in order to reduce microbial growth and attenuate a dysregulated immune response during infection. Our hypothesis is that temporary restriction of iron will lessen the incidence and complication rate of infections like pneumonia and result in a decrease of mortality and morbidity. Full article
(This article belongs to the Special Issue Globalization and Infectious Diseases)
Back to TopTop