Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Luca Bianchini Ciampoli ORCID = 0000-0003-0981-2104

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5155 KiB  
Article
A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs)
by Luca Bertolini, Fabrizio D’Amico, Antonio Napolitano, Luca Bianchini Ciampoli, Valerio Gagliardi and Jhon Romer Diezmos Manalo
Infrastructures 2023, 8(5), 81; https://doi.org/10.3390/infrastructures8050081 - 27 Apr 2023
Cited by 13 | Viewed by 3378
Abstract
Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of [...] Read more.
Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. Full article
Show Figures

Figure 1

29 pages, 7286 KiB  
Review
Satellite Remote Sensing and Non-Destructive Testing Methods for Transport Infrastructure Monitoring: Advances, Challenges and Perspectives
by Valerio Gagliardi, Fabio Tosti, Luca Bianchini Ciampoli, Maria Libera Battagliere, Luigi D’Amato, Amir M. Alani and Andrea Benedetto
Remote Sens. 2023, 15(2), 418; https://doi.org/10.3390/rs15020418 - 10 Jan 2023
Cited by 74 | Viewed by 10928
Abstract
High-temporal-frequency monitoring of transport infrastructure is crucial to facilitate maintenance and prevent major service disruption or structural failures. Ground-based non-destructive testing (NDT) methods have been successfully applied for decades, reaching very high standards for data quality and accuracy. However, routine campaigns and long [...] Read more.
High-temporal-frequency monitoring of transport infrastructure is crucial to facilitate maintenance and prevent major service disruption or structural failures. Ground-based non-destructive testing (NDT) methods have been successfully applied for decades, reaching very high standards for data quality and accuracy. However, routine campaigns and long inspection times are required for data collection and their implementation into reliable infrastructure management systems (IMSs). On the other hand, satellite remote sensing techniques, such as the Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) method, have proven effective in monitoring ground displacements of transport infrastructure (roads, railways and airfields) with a much higher temporal frequency of investigation and the capability to cover wider areas. Nevertheless, the integration of information from (i) satellite remote sensing and (ii) ground-based NDT methods is a subject that is still to be fully explored in civil engineering. This paper aims to review significant stand-alone and combined applications in these two areas of endeavour for transport infrastructure monitoring. The recent advances, main challenges and future perspectives arising from their mutual integration are also discussed. Full article
(This article belongs to the Special Issue Remote Sensing in Civil and Environmental Engineering)
Show Figures

Figure 1

14 pages, 7821 KiB  
Article
Integrating Non-Destructive Surveys into a Preliminary BIM-Oriented Digital Model for Possible Future Application in Road Pavements Management
by Fabrizio D’Amico, Luca Bianchini Ciampoli, Alessandro Di Benedetto, Luca Bertolini and Antonio Napolitano
Infrastructures 2022, 7(1), 10; https://doi.org/10.3390/infrastructures7010010 - 12 Jan 2022
Cited by 26 | Viewed by 4445
Abstract
The implementation of the digitalization of the linear infrastructure is growing rapidly and new methods for developing BIM-oriented digital models are increasing. The integration of the results obtained from non-destructive surveys carried out along a road infrastructure in a pavement digital model can [...] Read more.
The implementation of the digitalization of the linear infrastructure is growing rapidly and new methods for developing BIM-oriented digital models are increasing. The integration of the results obtained from non-destructive surveys carried out along a road infrastructure in a pavement digital model can be a useful method for developing an efficient process from a pavement management systems (PMS) point of view. In fact, several applications to optimize PMS have been thoroughly investigated over the years and several researchers and scientists have investigated significant elements for improving the PMS applied to a transport network, including road infrastructures. This study presents a new, tentative process for implementing into a BIM environment the dataset processed from two surveys carried out in a case study. Moreover, the main reason for this investigation is related to the need for an effective system able to evaluate continuously the pavement conditions and programming maintenance interventions. To date, both the instruments and the methods to detect the pavement configuration have evolved, along with the development of non-destructive technology (NDT) tools such as laser-scanners and ground-penetrating radar. Finally, the main results of the research demonstrate the possibility to provide a digital twin model from the synergistic use of geometric and design information with the results from monitoring conducted on a road infrastructure. The model can be potentially used in future BIM-based PMS applications. Full article
(This article belongs to the Special Issue Research and Developments in Pavements)
Show Figures

Figure 1

28 pages, 8343 KiB  
Article
Testing Sentinel-1 SAR Interferometry Data for Airport Runway Monitoring: A Geostatistical Analysis
by Valerio Gagliardi, Luca Bianchini Ciampoli, Sebastiano Trevisani, Fabrizio D’Amico, Amir M. Alani, Andrea Benedetto and Fabio Tosti
Sensors 2021, 21(17), 5769; https://doi.org/10.3390/s21175769 - 27 Aug 2021
Cited by 38 | Viewed by 6327
Abstract
Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-term evaluation of ground scatterers. However, its effectiveness as [...] Read more.
Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-term evaluation of ground scatterers. However, its effectiveness as a routine tool for certain critical application areas, such as the assessment of millimetre-scale differential displacements in airport runways, is still debated. This research aims to demonstrate the viability of using medium-resolution Copernicus ESA Sentinel-1A (C-Band) SAR products and their contribution to improve current maintenance strategies in case of localised foundation settlements in airport runways. To this purpose, “Runway n.3” of the “Leonardo Da Vinci International Airport” in Fiumicino, Rome, Italy was investigated as an explanatory case study, in view of historical geotechnical settlements affecting the runway area. In this context, a geostatistical study is developed for the exploratory spatial data analysis and the interpolation of the Sentinel-1A SAR data. The geostatistical analysis provided ample information on the spatial continuity of the Sentinel 1 data in comparison with the high-resolution COSMO-SkyMed data and the ground-based topographic levelling data. Furthermore, a comparison between the PSI outcomes from the Sentinel-1A SAR data—interpolated through Ordinary Kriging—and the ground-truth topographic levelling data demonstrated the high accuracy of the Sentinel 1 data. This is proven by the high values of the correlation coefficient (r = 0.94), the multiple R-squared coefficient (R2 = 0.88) and the Slope value (0.96). The results of this study clearly support the effectiveness of using Sentinel-1A SAR data as a continuous and long-term routine monitoring tool for millimetre-scale displacements in airport runways, paving the way for the development of more efficient and sustainable maintenance strategies for inclusion in next generation Airport Pavement Management Systems (APMSs). Full article
(This article belongs to the Special Issue Sensing Advancement and Health Monitoring of Transport Structures)
Show Figures

Graphical abstract

14 pages, 3957 KiB  
Technical Note
Displacement Monitoring in Airport Runways by Persistent Scatterers SAR Interferometry
by Luca Bianchini Ciampoli, Valerio Gagliardi, Chiara Ferrante, Alessandro Calvi, Fabrizio D’Amico and Fabio Tosti
Remote Sens. 2020, 12(21), 3564; https://doi.org/10.3390/rs12213564 - 30 Oct 2020
Cited by 52 | Viewed by 5825
Abstract
Deformations monitoring in airport runways and the surrounding areas is crucial, especially in cases of low-bearing capacity subgrades, such as the clayey subgrade soils. An effective monitoring of the infrastructure asset allows to secure the highest necessary standards in terms of the operational [...] Read more.
Deformations monitoring in airport runways and the surrounding areas is crucial, especially in cases of low-bearing capacity subgrades, such as the clayey subgrade soils. An effective monitoring of the infrastructure asset allows to secure the highest necessary standards in terms of the operational and safety requirements. Amongst the emerging remote sensing techniques for transport infrastructures monitoring, the Persistent Scatterers Interferometry (PSI) technique has proven effective for the evaluation of the ground deformations. However, its use for certain demanding applications, such as the assessment of millimetric differential deformations in airport runways, is still considered as an open issue for future developments. In this study, a time-series analysis of COSMO–SkyMed satellite images acquired from January 2015 to April 2019 is carried out by employing the PSI technique. The aim is to retrieve the mean deformation velocity and time series of the surface deformations occurring in airport runways. The technique is applied to Runway 3 at the “Leonardo da Vinci” International Airport in Rome, Italy. The proposed PSI technique is then validated by way of comparison with the deformation outcomes obtained on the runway by traditional topographic levelling over the same time span. The results of this study clearly demonstrate the efficiency and the accuracy of the applied PSI technique for the assessment of deformations in airport runways. Full article
(This article belongs to the Special Issue Trends in GPR and Other NDTs for Transport Infrastructure Assessment)
Show Figures

Graphical abstract

14 pages, 5071 KiB  
Article
Railway Ballast Monitoring by GPR: A Test-Site Investigation
by Luca Bianchini Ciampoli, Alessandro Calvi and Fabrizio D’Amico
Remote Sens. 2019, 11(20), 2381; https://doi.org/10.3390/rs11202381 - 14 Oct 2019
Cited by 36 | Viewed by 7315
Abstract
Effective maintenance of railways requires a comprehensive assessment of the actual condition of the construction materials involved. In this regard, Ground-Penetrating Radar (GPR) stands as a viable alternative to the invasive and time-consuming traditional techniques for the inspection of these infrastructures. This work [...] Read more.
Effective maintenance of railways requires a comprehensive assessment of the actual condition of the construction materials involved. In this regard, Ground-Penetrating Radar (GPR) stands as a viable alternative to the invasive and time-consuming traditional techniques for the inspection of these infrastructures. This work reports the experimental activities carried out on a test-site area within a railway depot in Rome, Italy. To this purpose, a 30 m-long railway section was divided into ten sub-sections reproducing different various physical and structural conditions of the track-bed. For more detail, combinations of varying scenarios of fragmentation and fouling of the ballast were reproduced. The set-up was then investigated using different multi-frequency GPR horn antenna systems. The effects of the different physical conditions of ballast on the electromagnetic response of the material were analysed for each scenario using time- and frequency-domain signal processing techniques. Parallel to this, modelling was provided to estimate fouling content. Interpretation of results has proven the viability of the GPR method in detecting signs of decay at the network level, thereby proving this technique to be worthy of implementation in asset management systems. Full article
Show Figures

Graphical abstract

20 pages, 5902 KiB  
Benchmark
Signal Processing of GPR Data for Road Surveys
by Luca Bianchini Ciampoli, Fabio Tosti, Nikos Economou and Francesco Benedetto
Geosciences 2019, 9(2), 96; https://doi.org/10.3390/geosciences9020096 - 19 Feb 2019
Cited by 107 | Viewed by 12338
Abstract
Effective quality assurance and quality control inspections of new roads as well as assessment of remaining service-life of existing assets is taking priority nowadays. Within this context, use of ground penetrating radar (GPR) is well-established in the field, although standards for a correct [...] Read more.
Effective quality assurance and quality control inspections of new roads as well as assessment of remaining service-life of existing assets is taking priority nowadays. Within this context, use of ground penetrating radar (GPR) is well-established in the field, although standards for a correct management of datasets collected on roads are still missing. This paper reports a signal processing method for data acquired on flexible pavements using GPR. To demonstrate the viability of the method, a dataset collected on a real-life flexible pavement was used for processing purposes. An overview of the use of non-destructive testing (NDT) methods in the field, including GPR, is first given. A multi-stage method is then presented including: (i) raw signal correction; (ii) removal of lower frequency harmonics; (iii) removal of antenna ringing; (iv) signal gain; and (v) band-pass filtering. Use of special processing steps such as vertical resolution enhancement, migration and time-to-depth conversion are finally discussed. Key considerations about the effects of each step are given by way of comparison between processed and unprocessed radargrams. Results have proven the viability of the proposed method and provided recommendations on use of specific processing stages depending on survey requirements and quality of the raw dataset. Full article
(This article belongs to the Special Issue Advances in Ground Penetrating Radar Research)
Show Figures

Figure 1

Back to TopTop