Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Authors = Lichao Liu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 25835 KiB  
Article
A Precise Prediction Method for Subsurface Temperatures Based on the Rock Resistivity–Temperature Coupling Model
by Ri Wang, Guoshu Huang, Jian Yang, Lichao Liu, Wang Luo and Xiangyun Hu
Remote Sens. 2025, 17(8), 1331; https://doi.org/10.3390/rs17081331 - 8 Apr 2025
Viewed by 457
Abstract
The accuracy of deep temperature predictions is critical to the precision of geothermal resource exploration, assessment, and the effectiveness of their development and utilization. However, the existing methods encounter significant challenges in predicting the distribution characteristics of deep temperature fields with both efficiency [...] Read more.
The accuracy of deep temperature predictions is critical to the precision of geothermal resource exploration, assessment, and the effectiveness of their development and utilization. However, the existing methods encounter significant challenges in predicting the distribution characteristics of deep temperature fields with both efficiency and accuracy. Many of these methods rely on empirical formulas to approximate the relationship between geophysical parameters and temperature. Unfortunately, such approximations often introduce substantial errors, undermining the reliability and precision of the predictions. We present an advanced prediction methodology for deep temperature fields based on the rock resistivity–temperature coupling model (RRTCM). By converting the fixed parameters in the empirical formulas to variables dependent on the formation depth, we establish a dynamic model that correlates rock resistivity with temperature on the basis of limited constrained borehole data. We then input the 2D magnetotelluric inversion results into the model, and the subsurface temperature distribution can be predicted indirectly with high precision on the basis of the resistivity–temperature coupling relationship. We validated this method in the Xiong’an New Area, China, and the determination coefficient (R2) of maximum temperature prediction reached 98.88%. The sensitivity analysis indicates that the prediction accuracy is positively correlated with the number and depth of the constrained boreholes and negatively correlated with the sampling interval of the well logging data. This method robustly supports geothermal resource development and enhances the understanding of geothermal field formation mechanisms. Full article
(This article belongs to the Special Issue Electromagnetic Modeling of Geophysical Prospecting in Remote Sensing)
Show Figures

Graphical abstract

11 pages, 14848 KiB  
Article
A Comparative Study of Arc Welding and Laser Welding for the Fabrication and Repair of Multi-Layer Hydro Plant Bellows
by Lichao Cao, Kaiming Lv, Zhengjun Liu, Guoying Tu, Yi Zhang, Han Hu, Zirui Yang, Huikang Wang, Hao Zhang and Guijun Bi
Appl. Sci. 2025, 15(6), 3387; https://doi.org/10.3390/app15063387 - 20 Mar 2025
Viewed by 695
Abstract
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to [...] Read more.
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to the defects of pores and insufficient fusion when fabricating or repairing such bellows. Precise laser welding with a high energy density and a low heat input has the potential to join multi-layer bellows in a high-quality manner. In this study, a comparative investigation was conducted on the arc welding and laser welding of multi-layer 316L stainless steel sheets and B610CF high-strength steel plates regarding the weld quality, microstructure and tensile properties. The results show that laser-welded joints produced a narrower heat-affected zone and a full weld without visible defects. Compared with arc welding, laser welding had more equiaxed grain regions in the fusion zone and a homogeneous elemental distribution in the heat-affected zone. This led to a more reliable welded joint using laser welding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

32 pages, 23330 KiB  
Article
Study on the Combustion Behavior of Inhomogeneous Partially Premixed Mixtures in Confined Space
by Yanfei Li, Xin Zhang, Lichao Chen and Ying Liu
Energies 2025, 18(4), 899; https://doi.org/10.3390/en18040899 - 13 Feb 2025
Cited by 1 | Viewed by 655
Abstract
Reasonably configuring the concentration distribution of the mixture to achieve partially premixed combustion has been proven to be an effective method for improving energy utilization efficiency. However, due to the significant influence of concentration non-uniformity and flow field disturbances, the combustion behavior and [...] Read more.
Reasonably configuring the concentration distribution of the mixture to achieve partially premixed combustion has been proven to be an effective method for improving energy utilization efficiency. However, due to the significant influence of concentration non-uniformity and flow field disturbances, the combustion behavior and mechanisms of partially premixed combustion have not been fully understood or systematically analyzed. In this study, the partially premixed combustion characteristics of methane–hydrogen–air mixtures in a confined space were investigated, focusing on the combustion behavior and key parameter variation patterns under different equivalence ratios (0.5, 0.7, 0.9) and hydrogen contents (10%, 20%, 30%, 40%). The global equivalence ratio and degree of partial premixing of the mixture were controlled by adjusting the fuel injection pulse width and ignition timing, thereby regulating the concentration field and flow field distribution within the combustion chamber. The constant-pressure method was used to calculate the burning velocity. Results show that as the mixture formation time decreases, the degree of partial premixing increases, accelerating the heat release process, increasing burning velocity, and shortening the combustion duration. It exhibits rapid combustion characteristics, particularly during the initial combustion phase, where flame propagation speed and heat release rate increase significantly. The burning velocity demonstrates a distinct single-peak profile, with the peak burning velocity increasing and its occurrence advancing as the degree of partial premixing increases. Additionally, hydrogen’s preferential diffusion effect is enhanced with increasing mixture partial premixing, making the combustion process more efficient and concentrated. This effect is particularly pronounced under low-equivalence-ratio (lean burn) conditions, where the combustion reaction rate improves more significantly, leading to greater combustion stability. The peak of the partially premixed burning velocity occurs almost simultaneously with the peak of the second-order derivative of the combustion pressure. This phenomenon highlights the strong correlation between the combustion reaction rate and the dynamic variations in pressure. Full article
Show Figures

Figure 1

12 pages, 4039 KiB  
Article
Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel
by Yaping Song, Yihan Xia, Wei Zhang, Yunlong Yu, Yanyu Cui, Lichao Liu, Tong Zhang, Sen Liu, Hongran Zhao and Teng Fei
Sensors 2024, 24(24), 8154; https://doi.org/10.3390/s24248154 - 20 Dec 2024
Viewed by 808
Abstract
Owing to its extensive use and intrinsic toxicity, NH3 detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH3 in high humidity is still a challenge. In this work, a humidity-activated NH3 sensor [...] Read more.
Owing to its extensive use and intrinsic toxicity, NH3 detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH3 in high humidity is still a challenge. In this work, a humidity-activated NH3 sensor was prepared by urocanic acid (URA) modifying poly (ethylene glycol) diacrylate (PEGDA) via a thiol-ene click cross-linking reaction. The optimized sensor achieved a response of 70% to 50 ppm NH3 at 80% RH, with a response time of 105.6 s and a recovery time of 346.8 s. The sensor was improved for response and recovery speed. In addition, the prepared sensor showed excellent selectivity to NH3 in high-humidity environments, making it suitable for use in some areas with high humidity all the year round or in high-humidity areas such as the detection of respiratory gas. A detailed investigation of the humidity-activated NH3-sensing mechanism was conducted using complex impedance plot (CIP) measurements. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

26 pages, 14325 KiB  
Article
Genome-Wide Identification and Expression of Neuropeptides and Their Expression Patterns After RNAi of CHH Genes in Pacific White Shrimp Litopenaeus vannamei
by Long Zhang, Lichao Sun, Guanghao Song, Beibei Wang, Yanting Cui, Fei Liu, Yuquan Li and Zhongkai Wang
Biology 2024, 13(12), 1038; https://doi.org/10.3390/biology13121038 - 11 Dec 2024
Cited by 1 | Viewed by 1335
Abstract
Neuropeptides are pivotal in regulating a broad spectrum of developmental, physiological, and behavioral processes throughout the life cycle of crustaceans. In this comprehensive study, we utilized a multiomics approach to characterize neuropeptide precursors and to assess the expression profiles of neuropeptide-encoding genes across [...] Read more.
Neuropeptides are pivotal in regulating a broad spectrum of developmental, physiological, and behavioral processes throughout the life cycle of crustaceans. In this comprehensive study, we utilized a multiomics approach to characterize neuropeptide precursors and to assess the expression profiles of neuropeptide-encoding genes across various tissues and developmental stages in the Pacific white shrimp, Litopenaeus vannamei. Additionally, we explored the differential expression of neuropeptide genes in the eyestalk before and after the RNA interference-mediated suppression of crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH) gene expression. Our study identified a total of 125 neuropeptide-encoding genes in L. vannamei, with 54 of these genes previously uncharacterized in the genome. Notably, certain neuropeptide-encoding gene families showed significant expansion, as demonstrated by the discovery of 10 adipokinetic hormone/corazonin-like peptide (ACP) genes, 55 CHH superfamily genes, and 13 pigment-dispersing hormone (PDH) genes. Alternative splicing was also found to play a crucial role in generating functionally diverse neuropeptides; for example, the agatoxin and calcitonin genes undergo alternative splicing that leads to the production of three distinct agatoxin neuropeptides and two distinct calcitonin neuropeptides, respectively. Neuropeptide genes are predominantly expressed in neuroendocrine tissues, including the eyestalk, cerebral ganglia, thoracic ganglia, and ventral ganglia. During the embryonic development of L. vannamei, with the exception of the molt-inhibiting hormone (MIH) gene, all monitored genes display minimal expression from the zygote stage through to the larval in membrane (Lim) stage. In contrast, the majority of these genes exhibit a steady uptick in expression from the nauplius stage onwards, culminating in the post-larval stage. Furthermore, comparative transcriptomic analysis of the eyestalk revealed that the expression of the majority of neuropeptide genes was downregulated following the suppression of CHH and VIH gene expression. This downregulation was significantly associated with the enrichment of pathways related to amino acid metabolism and hormone synthesis. The findings of this study provide valuable insights for future research aimed at elucidating the role of neuropeptides in regulating physiological functions in L. vannamei, potentially leading to advancements in shrimp aquaculture practices. Full article
(This article belongs to the Special Issue Advances in Biological Research into Shrimps, Crabs and Lobsters)
Show Figures

Figure 1

16 pages, 3980 KiB  
Article
Planting Ages Inhibited Soil Respiration and CO2-C Emissions Attribute to Soil Degradation in Gravel-Mulched Land in Arid Areas
by Bingyao Wang, Yunfei Li, Zhixian Liu, Peiyuan Wang, Zhanjun Wang, Xudong Wu, Yongping Gao, Lichao Liu and Haotian Yang
Land 2024, 13(11), 1923; https://doi.org/10.3390/land13111923 - 15 Nov 2024
Viewed by 852
Abstract
Gravel mulching is a widely employed strategy for water conservation in arid agricultural regions, with potential implications for soil carbon (C) sequestration and greenhouse gas emissions. However, soil respiration and CO2-C emissions remain uncertain owing to less consideration of the influence [...] Read more.
Gravel mulching is a widely employed strategy for water conservation in arid agricultural regions, with potential implications for soil carbon (C) sequestration and greenhouse gas emissions. However, soil respiration and CO2-C emissions remain uncertain owing to less consideration of the influence of precipitation patterns and planting age. In this study, we investigated the soil respiration rate (Rsoil) and cumulative CO2-C emission (Ccum), both measured over a period of 72 h, along with soil properties and enzyme activities under different precipitation conditions based on gravel mulching with different planting ages. We analyzed the effects of planting ages on Rsoil and Ccum and revealed the underlying mechanisms driving changes in environmental factors on Rsoil and Ccum. The results demonstrated that the Rsoil reached the maximum value at about 1 h, 0.5 h, and 0.25 h after rewetting in 1, 10, and 20 years of gravel mulching under the condition with 1 mm, 5 mm, and 10 mm of precipitation, respectively, whereas the Rsoil exhibited its maximum at about 8 h after soil rewetting under precipitation of 30 mm. The Ccum induced by precipitation pulses tends to decrease with increasing years of gravel mulching. The Ccum was 0.0061 t ha−1 in the 20-year gravel-mulched soil, representing a 53.79% reduction compared to the 1-year gravel-mulched soil. Soil organic matter (SOM), planting ages, and alkaline phosphatase (ALP) were the primary factors influencing the Rsoil and Ccum in 0–20 cm, while SOM, planting ages, and soil porosity (AirP) were the key factors affecting the Rsoil and Ccum in 20–40 cm. The Rsoil and Ccum in the 0–20 cm soil were regulated by soil enzyme activities, while those of 20–40 cm soil were controlled by soil properties. This indicates that the decrease in Rsoil and Ccum is caused by soil degradation, characterized by a decrease in SOM and ALP. This study offers a novel insight into the long-term environmental impact of gravel mulching measures in arid areas, which is helpful in providing a theoretical basis for dryland agricultural management. It is imperative to consider the duration of gravel mulching when predicting the potential for C sequestration in arid agricultural areas. Full article
Show Figures

Figure 1

14 pages, 3201 KiB  
Article
A Vibrotactile Belt for Measuring Vibrotactile Acuities on the Human Torso Using Coin Motors
by Shaoyi Wang, Wei Dai, Lichao Yu, Yong Liu, Yidong Yang, Ruomi Guo, Yuemin Hong, Jianning Chen, Shangxiong Lin, Xingxing Ruan, Qiangqiang Ouyang and Xiaoying Wang
Micromachines 2024, 15(11), 1341; https://doi.org/10.3390/mi15111341 - 31 Oct 2024
Cited by 1 | Viewed by 1431
Abstract
Accurate measurement of the vibrotactile acuities of the human torso is the key to designing effective torso-worn vibrotactile displays for healthcare applications such as navigation aids for visually impaired persons. Although efforts have been made to measure vibrotactile acuities, there remains a lack [...] Read more.
Accurate measurement of the vibrotactile acuities of the human torso is the key to designing effective torso-worn vibrotactile displays for healthcare applications such as navigation aids for visually impaired persons. Although efforts have been made to measure vibrotactile acuities, there remains a lack of systematic studies addressing the spatial, temporal, and intensity-related aspects of vibrotactile sensitivity on the human torso. In this work, a torso-worn vibrotactile belt consisting of two crossed coin motor arrays was designed and a psychophysical study was carried out to measure the spatial, temporal, and intensity-related vibrotactile acuities of a set of human subjects wearing the designed belt. The objective parameters of vibrational intensity and the timing latency of the coin motor were also determined before measuring the vibrotactile acuities. The experimental results indicated that the tested coin motor was able to generate a median number of five and six available just-noticeable differences in intensity and duration, respectively. Among the four parameters of vibrational intensity, the perceived intensity was the most relevant to vibrational displacement. The spatial acuities measured as the degree of two-point spatial thresholds (TPTs) showed less individual difference than the distance TPTs. The results from the current work provide valuable guidance for the design of a comfortable torso-worn vibrotactile display using coin motors. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

15 pages, 6630 KiB  
Article
An Actively Vision-Assisted Low-Load Wearable Hand Function Mirror Rehabilitation System
by Zheyu Chen, Huanjun Wang, Yubing Yang, Lichao Chen, Zhilong Yan, Guoli Xiao, Yi Sun, Songsheng Zhu, Bin Liu, Liang Li and Jianqing Li
Actuators 2024, 13(9), 368; https://doi.org/10.3390/act13090368 - 19 Sep 2024
Viewed by 1428
Abstract
The restoration of fine motor function in the hand is crucial for stroke survivors with hemiplegia to reintegrate into daily life and presents a significant challenge in post-stroke rehabilitation. Current mirror rehabilitation systems based on wearable devices require medical professionals or caregivers to [...] Read more.
The restoration of fine motor function in the hand is crucial for stroke survivors with hemiplegia to reintegrate into daily life and presents a significant challenge in post-stroke rehabilitation. Current mirror rehabilitation systems based on wearable devices require medical professionals or caregivers to assist patients in donning sensor gloves on the healthy side, thus hindering autonomous training, increasing labor costs, and imposing psychological burdens on patients. This study developed a low-load wearable hand function mirror rehabilitation robotic system based on visual gesture recognition. The system incorporates an active visual apparatus capable of adjusting its position and viewpoint autonomously, enabling the subtle monitoring of the healthy side’s gesture throughout the rehabilitation process. Consequently, patients only need to wear the device on their impaired hand to complete the mirror training, facilitating independent rehabilitation exercises. An algorithm based on hand key point gesture recognition was developed, which is capable of automatically identifying eight distinct gestures. Additionally, the system supports remote audio–video interaction during training sessions, addressing the lack of professional guidance in independent rehabilitation. A prototype of the system was constructed, a dataset for hand gesture recognition was collected, and the system’s performance as well as functionality were rigorously tested. The results indicate that the gesture recognition accuracy exceeds 90% under ten-fold cross-validation. The system enables operators to independently complete hand rehabilitation training, while the active visual system accommodates a patient’s rehabilitation needs across different postures. This study explores methods for autonomous hand function rehabilitation training, thereby offering valuable insights for future research on hand function recovery. Full article
(This article belongs to the Special Issue Actuators and Robotic Devices for Rehabilitation and Assistance)
Show Figures

Figure 1

19 pages, 5860 KiB  
Article
The Response of Rhizosphere Microbial C and N-Cycling Gene Abundance of Sand-Fixing Shrub to Stand Age Following Desert Restoration
by Yunfei Li, Bingyao Wang, Zhanjun Wang, Wenqiang He, Yanli Wang, Lichao Liu and Haotian Yang
Microorganisms 2024, 12(9), 1752; https://doi.org/10.3390/microorganisms12091752 - 23 Aug 2024
Cited by 1 | Viewed by 1210
Abstract
Rhizosphere microorganisms play a pivotal role in biogeochemical cycles, particularly in relation to carbon (C) and nitrogen (N) cycles. However, the impact of stand age on the composition of rhizosphere microbial communities and the abundance involved in C and N cycling remains largely [...] Read more.
Rhizosphere microorganisms play a pivotal role in biogeochemical cycles, particularly in relation to carbon (C) and nitrogen (N) cycles. However, the impact of stand age on the composition of rhizosphere microbial communities and the abundance involved in C and N cycling remains largely unexplored in restoration ecosystems dominated by shrubs of temperate deserts. This study focuses on revealing changes in microbial composition and functional genes in the rhizosphere soil of Caragana korshinskii after revegetation, as well as their response mechanisms to changes in environmental factors. The alpha diversity of bacteria tended to increase with stand age, whereas that of fungi decreased. The abundance of denitrification; dissimilatory nitrate reduction to ammonium, nitrification, and ammonium assimilation; and C fixation-related gene levels increased with stand age, whereas those related to the degradation of starch, pectin, hemicellulose, cellulose, and aromatics decreased. The parameters MBC, MBN, and TC were the key factors affecting the bacterial community, whereas the fungal community was regulated by TN, EC, pH, and MBC. Stand age indirectly regulated C and N cycling functions of genes through altered soil properties and microbial community structures. This study presents a novel approach to accurately evaluate the C and N cycling dynamics within ecosystems at various stages of restoration. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

27 pages, 6716 KiB  
Article
Comparative Metabolome and Transcriptome Analysis of Rapeseed (Brassica napus L.) Cotyledons in Response to Cold Stress
by Xinhong Liu, Tonghua Wang, Ying Ruan, Xiang Xie, Chengfang Tan, Yiming Guo, Bao Li, Liang Qu, Lichao Deng, Mei Li and Chunlin Liu
Plants 2024, 13(16), 2212; https://doi.org/10.3390/plants13162212 - 9 Aug 2024
Cited by 4 | Viewed by 1629
Abstract
Cold stress affects the seed germination and early growth of winter rapeseed, leading to yield losses. We employed transmission electron microscopy, physiological analyses, metabolome profiling, and transcriptome sequencing to understand the effect of cold stress (0 °C, LW) on the cotyledons of cold-tolerant [...] Read more.
Cold stress affects the seed germination and early growth of winter rapeseed, leading to yield losses. We employed transmission electron microscopy, physiological analyses, metabolome profiling, and transcriptome sequencing to understand the effect of cold stress (0 °C, LW) on the cotyledons of cold-tolerant (GX74) and -sensitive (XY15) rapeseeds. The mesophyll cells in cold-treated XY15 were severely damaged compared to slightly damaged cells in GX74. The fructose, glucose, malondialdehyde, and proline contents increased after cold stress in both genotypes; however, GX74 had significantly higher content than XY15. The pyruvic acid content increased after cold stress in GX74, but decreased in XY15. Metabolome analysis detected 590 compounds, of which 32 and 74 were differentially accumulated in GX74 (CK vs. cold stress) and XY15 (CK vs. cold stressed). Arachidonic acid and magnoflorine were the most up-accumulated metabolites in GX74 subjected to cold stress compared to CK. There were 461 and 1481 differentially expressed genes (DEGs) specific to XY15 and GX74 rapeseeds, respectively. Generally, the commonly expressed genes had higher expressions in GX74 compared to XY15 in CK and cold stress conditions. The expression changes in DEGs related to photosynthesis-antenna proteins, chlorophyll biosynthesis, and sugar biosynthesis-related pathways were consistent with the fructose and glucose levels in cotyledons. Compared to XY15, GX74 showed upregulation of a higher number of genes/transcripts related to arachidonic acid, pyruvic acid, arginine and proline biosynthesis, cell wall changes, reactive oxygen species scavenging, cold-responsive pathways, and phytohormone-related pathways. Taken together, our results provide a detailed overview of the cold stress responses in rapeseed cotyledons. Full article
(This article belongs to the Special Issue Genetics and Genomics of Crop Breeding and Improvement)
Show Figures

Figure 1

18 pages, 3895 KiB  
Article
Core–Shell Interface Engineering Strategies for Modulating Energy Transfer in Rare Earth-Doped Nanoparticles
by Zhaoxi Zhou, Yuan Liu, Lichao Guo, Tian Wang, Xinrong Yan, Shijiong Wei, Dehui Qiu, Desheng Chen, Xiaobo Zhang and Huangxian Ju
Nanomaterials 2024, 14(16), 1326; https://doi.org/10.3390/nano14161326 - 7 Aug 2024
Cited by 1 | Viewed by 2234
Abstract
Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core–shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies—one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method—for creating multilayered RENPs [...] Read more.
Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core–shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies—one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method—for creating multilayered RENPs show notable differences in spectral performance. To clarify this issue, a thorough comparative analysis of the elemental distribution and spectral characteristics of RENPs synthesized by these two strategies was conducted. The SA strategy, which avoids the partial mixing stage of shell and core precursors inherent in the LBL strategy, produces RENPs with a distinct interface in elemental distribution. This unique elemental distribution reduces unnecessary energy loss via energy transfer between heterogeneous elements in different shell layers. Consequently, the synthesis method choice can effectively modulate the spectral properties of RENPs. This discovery has been applied to the design of orthogonal RENP biomedical probes with appropriate dimensions, where the SA strategy introduces a refined inert interface to prevent unnecessary energy loss. Notably, this strategy has exhibited a 4.3-fold enhancement in NIR-II in vivo imaging and a 2.1-fold increase in reactive oxygen species (ROS)-related photodynamic therapy (PDT) orthogonal applications. Full article
Show Figures

Figure 1

22 pages, 7934 KiB  
Article
Effects of Hydrogen Addition on the Thermal Performance and Emissions of Biomass Syngas Combustion in a Horizontal Boiler
by Shengnan Suxing, Xiao Yu, Jinze Li, Xuelai Liu, Lichao Sui, Jingkui Zhang, Zaiguo Fu and Yan Shao
Energies 2024, 17(11), 2632; https://doi.org/10.3390/en17112632 - 29 May 2024
Cited by 2 | Viewed by 946
Abstract
Due to its low calorific value, abnormal phenomena such as incomplete combustion and flameout may occur during the combustion process of biomass syngas. The applicability of adding hydrogen can assist in the combustion of biomass syngas in boilers to overcome the above defects, [...] Read more.
Due to its low calorific value, abnormal phenomena such as incomplete combustion and flameout may occur during the combustion process of biomass syngas. The applicability of adding hydrogen can assist in the combustion of biomass syngas in boilers to overcome the above defects, and the effects need to be investigated. In this study, a multi-mechanism model is employed to numerically simulate the flow and combustion of a horizontal boiler burning biomass syngas. The reliability verification of the model is conducted by comparing it with the experimental results of combustion in a domestic boiler with biomass syngas. From the views of multi-fields and synergy, the effects of hydrogen addition on the thermal performance and emissions of biomass syngas are further expounded. Two scenarios are taken into consideration: hydrogen addition at a constant fuel volume flow rate and constant heat input. The result indicates that hydrogen addition significantly affects the multi-field synergy, which is advantageous for improving the heat transfer performance and combustion efficiency of biomass syngas. However, when the hydrogen addition ratio exceeds 20% at a constant fuel volume flow rate and 25% at constant heat input, its impact may be reduced. When the hydrogen content increases, the outlet temperature of the combustion chamber decreases, and pollutant emissions are effectively controlled. The turbulent kinetic energy at the reversal section decreases, and the uniformity of the flow field improves. These results provide certain guidance for the efficient utilization of biomass syngas and the operation of boilers burning biomass syngas. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

16 pages, 5731 KiB  
Article
Research on Rapeseed Seedling Counting Based on an Improved Density Estimation Method
by Qi Wang, Chunpeng Li, Lili Huang, Liqing Chen, Quan Zheng and Lichao Liu
Agriculture 2024, 14(5), 783; https://doi.org/10.3390/agriculture14050783 - 19 May 2024
Cited by 1 | Viewed by 1599
Abstract
The identification of seedling numbers is directly related to the acquisition of seedling information, such as survival rate and emergence rate. It indirectly affects detection efficiency and yield evaluation. Manual counting methods are time-consuming and laborious, and the accuracy is not high in [...] Read more.
The identification of seedling numbers is directly related to the acquisition of seedling information, such as survival rate and emergence rate. It indirectly affects detection efficiency and yield evaluation. Manual counting methods are time-consuming and laborious, and the accuracy is not high in complex backgrounds or high-density environments. It is challenging to achieve improved results using traditional target detection methods and improved methods. Therefore, this paper adopted the density estimation method and improved the population density counting network to obtain the rapeseed seedling counting network named BCNet. BCNet uses spatial attention and channel attention modules and enhances feature information and concatenation to improve the expressiveness of the entire feature map. In addition, BCNet uses a 1 × 1 convolutional layer for additional feature extraction and introduces the torch.abs function at the network output port. In this study, distribution experiments and seedling prediction were conducted. The results indicate that BCNet exhibits the smallest counting error compared to the CSRNet and the Bayesian algorithm. The MAE and MSE reach 3.40 and 4.99, respectively, with the highest counting accuracy. The distribution experiment and seedling prediction showed that, compared with the other density maps, the density response points corresponding to the characteristics of the seedling region were more prominent. The predicted number of the BCNet algorithm was closer to the actual number, verifying the feasibility of the improved method. This could provide a reference for the identification and counting of rapeseed seedlings. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 10611 KiB  
Article
Exploring the Efficacy of Hydroxybenzoic Acid Derivatives in Mitigating Jellyfish Toxin-Induced Skin Damage: Insights into Protective and Reparative Mechanisms
by Hao Geng, Rongfeng Li, Lichao Teng, Chunlin Yu, Wenjie Wang, Kun Gao, Aoyu Li, Song Liu, Ronge Xing, Huahua Yu and Pengcheng Li
Mar. Drugs 2024, 22(5), 205; https://doi.org/10.3390/md22050205 - 29 Apr 2024
Cited by 4 | Viewed by 2431
Abstract
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. [...] Read more.
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds’ ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

21 pages, 5459 KiB  
Article
Inhibition of Carbohydrate Metabolism Potentiated by the Therapeutic Effects of Oxidative Phosphorylation Inhibitors in Colon Cancer Cells
by Lichao Guo, Baochen Zhang, Wen Zhang, Yanqi Xie, Xi Chen, Xueke Sun, David S. Watt, Chunming Liu, H. Peter Spielmann and Xifu Liu
Cancers 2024, 16(7), 1399; https://doi.org/10.3390/cancers16071399 - 2 Apr 2024
Cited by 5 | Viewed by 5522
Abstract
Cancer cells undergo a significant level of “metabolic reprogramming” or “remodeling” to ensure an adequate supply of ATP and “building blocks” for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, [...] Read more.
Cancer cells undergo a significant level of “metabolic reprogramming” or “remodeling” to ensure an adequate supply of ATP and “building blocks” for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I. Furthermore, DBI-1 and a glucose transporter 1 (GLUT1) inhibitor, BAY-876, synergistically inhibited CRC cell growth in vitro and in vivo. We now report a study of the structure–activity relationships (SARs) in the isoflavonoid family in which we identified a new DBI-1 analog, namely, DBI-2, with promising properties. Here, we aimed to explore the antitumor mechanisms of DBIs and to develop new combination strategies by targeting both glycolysis and OXPHOS. We identified DBI-2 as a novel AMPK activator using an AMPK phosphorylation assay as a readout. DBI-2 inhibited mitochondrial complex I in the Seahorse assays. We performed proliferation and Western blotting assays and conducted studies of apoptosis, necrosis, and autophagy to corroborate the synergistic effects of DBI-2 and BAY-876 on CRC cells in vitro. We hypothesized that restricting the carbohydrate uptake with a KD would mimic the effects of GLUT1 inhibitors, and we found that a ketogenic diet significantly enhanced the therapeutic efficacy of DBI-2 in CRC xenograft mouse models, an outcome that suggested a potentially new approach for combination cancer therapy. Full article
(This article belongs to the Special Issue Targeting Mitochondria in Anti-tumor Drug Development)
Show Figures

Figure 1

Back to TopTop