Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Kok Khiang Peh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1722 KiB  
Article
Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study
by Gabriel Onn Kit Loh, Emily Yii Ling Wong, Yvonne Tze Fung Tan, Siew Chyee Heng, Mardiana Saaid, Kit Yee Cheah, Nurul Diyana Mohd Sali, Nair Damenthi, Sharon Shi Min Ng, Long Chiau Ming and Kok Khiang Peh
Molecules 2022, 27(17), 5706; https://doi.org/10.3390/molecules27175706 - 4 Sep 2022
Cited by 7 | Viewed by 3669
Abstract
Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. [...] Read more.
Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. A tandem mass spectrometer equipped with an electrospray ionization (ESI) source operated in a positive mode and multiple reaction monitoring (MRM) were used for data collection. The quantitative MRM transition ions were m/z 359.15 > 279.10 and m/z 363.10 > 282.10 for etoricoxib and IS. The linear range was from 10.00 to 4000.39 ng/mL and the validation parameters were within the acceptance limits of the European Medicine Agency (EMA) and Food and Drug Analysis (FDA) guidelines. The present method was sensitive (10.00 ng/mL with S/N > 40), simple, selective (K prime > 2), and fast (short run time of 2 min), with negligible matrix effect and consistent recovery, suitable for high throughput analysis. The method was used to quantitate etoricoxib plasma concentrations in a bioequivalence study of two 120 mg etoricoxib formulations. Incurred sample reanalysis results further supported that the method was robust and reproducible. Full article
Show Figures

Figure 1

15 pages, 1287 KiB  
Article
Fast Melt Cocoa Butter Tablet: Effect of Waxes, Starch, and PEG 6000 on Physical Properties of the Preparation
by Kai Bin Liew, Long Chiau Ming, Bey-Hing Goh and Kok Khiang Peh
Molecules 2022, 27(10), 3128; https://doi.org/10.3390/molecules27103128 - 13 May 2022
Cited by 4 | Viewed by 5532
Abstract
A fast melt tablet (FMT) is well regarded as an alternative delivery system that might help resolve a patient’s non-compliance issue. The main objective of this study was to develop a cocoa butter-based FMT. Additives, namely 5–15% of PEG 6000, beeswax, paraffin wax, [...] Read more.
A fast melt tablet (FMT) is well regarded as an alternative delivery system that might help resolve a patient’s non-compliance issue. The main objective of this study was to develop a cocoa butter-based FMT. Additives, namely 5–15% of PEG 6000, beeswax, paraffin wax, and corn starch, were incorporated into the cocoa butter-based FMT to study the effects of these additives with the physical characteristic of a cocoa butter FMT. An optimum-based formulation was chosen according to the desired hardness and disintegration time and the taste masking property achieved with the model drug—dapoxetine. The analysis demonstrated that incorporating beeswax (15%) and paraffin wax (15%) could prolong the disintegration time by at least two-fold. On the contrary, the presence of corn starch was found to cause an increase in the hardness and reduction of the disintegration time. The disintegration mechanism might be presumed due to the synergistic effect of starch swelling and cocoa butter melting. The hardness value and in vitro disintegration time of the optimum formulation were recorded at 2.93 ± 0.22 kg and 151.67 ± 6.98 s. In terms of dissolution, 80% of dapoxetine was released within 30 min and the dissolution profile was comparable to the innovator product. The formulation was palatable and stable for at least 1 year. The exposure of the FMT formulation at 30 °C for 12 months was reported to be stable. Along with the sound palatability profile and high drug load capacity, the current formulation possesses the desired characteristics to be scaled up and marketed. Full article
Show Figures

Figure 1

17 pages, 2710 KiB  
Article
Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal
by Mehreen Bashir, Haroon Khalid Syed, Sajid Asghar, Muhammad Irfan, Waleed Hassan Almalki, Salah Ali Menshawi, Ikram Ullah Khan, Pervaiz A. Shah, Ikrima Khalid, Junaid Ahmad, Umar Farooq Gohar, Kok Khiang Peh and Muhammad Shahid Iqbal
Polymers 2020, 12(7), 1564; https://doi.org/10.3390/polym12071564 - 15 Jul 2020
Cited by 20 | Viewed by 4080
Abstract
The effects of three hydrophilic polymers, namely, carboxymethyl cellulose sodium (CMC-Na), polyvinyl alcohol (PVA) and poloxamer-188 (PXM-188) on the solubility and dissolution of diflunisal (DIF) in complexation with β-cyclodextrin (βCD) or hydroxypropyl β-cyclodextrin (HPβCD), were investigated. The kneading method was used at different [...] Read more.
The effects of three hydrophilic polymers, namely, carboxymethyl cellulose sodium (CMC-Na), polyvinyl alcohol (PVA) and poloxamer-188 (PXM-188) on the solubility and dissolution of diflunisal (DIF) in complexation with β-cyclodextrin (βCD) or hydroxypropyl β-cyclodextrin (HPβCD), were investigated. The kneading method was used at different drug to cyclodextrin weight ratios. Increases in solubility and drug release were observed with the DIF/βCD and DIF/HPβCD complexes. The addition of hydrophilic polymers at 2.5, 5.0 and 10.0% w/w markedly improved the complexation and solubilizing efficiency of βCD and HPβCD. Fourier-transform infrared (FTIR) showed that DIF was successfully included into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) confirmed stronger drug amorphization and entrapment in the molecular cage of cyclodextrins. The addition of PVA, CMC-Na or PXM-188 reduced further the intensity of the DIF endothermic peak. Most of the sharp and intense peaks of DIF disappeared with the addition of hydrophilic polymers. In conclusion, PXM-188 at a weight ratio of 10.0% w/w was the best candidate in enhancing the solubility, stability and release of DIF. Full article
Show Figures

Graphical abstract

22 pages, 2801 KiB  
Article
Synthesis, Characterisation, and Evaluation of a Cross-Linked Disulphide Amide-Anhydride-Containing Polymer Based on Cysteine for Colonic Drug Delivery
by Vuanghao Lim, Kok Khiang Peh and Shariza Sahudin
Int. J. Mol. Sci. 2013, 14(12), 24670-24691; https://doi.org/10.3390/ijms141224670 - 18 Dec 2013
Cited by 15 | Viewed by 7049
Abstract
The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the [...] Read more.
The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5–1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon. Full article
(This article belongs to the Section Biochemistry)
Show Figures

13 pages, 1125 KiB  
Communication
Development of a Stepping Force Analgesic Meter for a Rat Arthritic Model
by Mun Fei Yam, Lip Yee Por, Kok Khiang Peh, Mariam Ahmad, Mohd. Zaini Asmawi, Lee Fung Ang, Delina Beh Mei Yin, Sim Ying Ong, Muthanna Fawzy Abdulkarim, Ghassan Zuhair Abdullah, Ibrahim Muhammad Salman, Omar Ziad Ameer, Elsnoussi Ali Hussin Mohamed, Mohd Akmal Hashim, Elham Farsi and Sook Yee Hor
Sensors 2011, 11(5), 5058-5070; https://doi.org/10.3390/s110505058 - 5 May 2011
Cited by 3 | Viewed by 11296
Abstract
Behavioural assessment of experimental pain is an essential method for analysing and measuring pain levels. Rodent models, which are widely used in behavioural tests, are often subject to external forces and stressful manipulations that cause variability of the parameters measured during the experiment. [...] Read more.
Behavioural assessment of experimental pain is an essential method for analysing and measuring pain levels. Rodent models, which are widely used in behavioural tests, are often subject to external forces and stressful manipulations that cause variability of the parameters measured during the experiment. Therefore, these parameters may be inappropriate as indicators of pain. In this article, a stepping-force analgesimeter was designed to investigate the variations in the stepping force of rats in response to pain induction. The proposed apparatus incorporates new features, namely an infrared charge-coupled device (CCD) camera and a data acquisition system. The camera was able to capture the locomotion of the rats and synchronise the stepping force concurrently so that each step could be identified. Inter-day and intra-day precision and accuracy of each channel (there were a total of eight channels in the analgesimeter and each channel was connected to one load cell and one amplifier) were studied using different standard load weights. The validation studies for each channel also showed convincing results whereby intra-day and inter-day precision were less than 1% and accuracy was 99.36–100.36%. Consequently, an in vivo test was carried out using 16 rats (eight females and eight males). The rats were allowed to randomly walk across the sensor tunnel (the area that contained eight channels) and the stepping force and locomotion were recorded. A non-expert, but from a related research domain, was asked to differentiate the peaks of the front and hind paw, respectively. The results showed that of the total movement generated by the rats, 50.27 ± 3.90% in the case of the male rats and 62.20 ± 6.12% in that of the female rats had more than two peaks, a finding which does not substantiate the assumptions made in previous studies. This study also showed that there was a need to use the video display frame to distinguish between the front and hind paws in the case of 48.80 ± 4.01% of the male rats and 66.76 ± 5.35% of the female rats. Evidently the assumption held by current researchers regarding stepping force measurement is not realistic in terms of application, and as this study has shown, the use of a video display frame is essential for the identification of the front and hind paws through the peak signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop