Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Kevin M. Chang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1208 KiB  
Article
Challenges and Opportunities in Developing an Oncology Clinical Trial Network in the United States Veterans Affairs Health Care System: The VA STARPORT Experience
by Abhishek A. Solanki, Kevin Zheng, Alicia N. Skipworth, Lisa M. Robin, Ryan F. Leparski, Elizabeth Henry, Matthew Rettig, Joseph K. Salama, Timothy Ritter, Jeffrey Jones, Marcus Quek, Michael Chang, Alec M. Block, James S. Welsh, Aryavarta Kumar, Hann-Hsiang Chao, Albert C. Chen, Ronald Shapiro, Rhonda L. Bitting, Robert Kwon, William Stross, Lindsay Puckett, Yu-Ning Wong, Nicholas G. Nickols and Kimberly Carlsonadd Show full author list remove Hide full author list
Curr. Oncol. 2024, 31(8), 4781-4794; https://doi.org/10.3390/curroncol31080358 - 21 Aug 2024
Cited by 1 | Viewed by 1914
Abstract
The United States Veterans Affairs (VA) Health Care System has a strong history of conducting impactful oncology randomized clinical trials (RCTs). We developed a phase II/III RCT to test the use of metastasis-directed therapy in Veterans with oligometastatic prostate cancer (OMPC)—the first VA [...] Read more.
The United States Veterans Affairs (VA) Health Care System has a strong history of conducting impactful oncology randomized clinical trials (RCTs). We developed a phase II/III RCT to test the use of metastasis-directed therapy in Veterans with oligometastatic prostate cancer (OMPC)—the first VA RCT in OMPC that leverages novel imaging and advanced radiotherapy techniques. To accomplish this, we developed a clinical trial network to conduct the study. In this manuscript, we describe several challenges we encountered in study development/conduct and our strategies to address them, with the goal of helping investigators establish robust study networks to conduct clinical trials. In the study start-up, we encountered challenges in timely site activation, and leveraged project management to maximize efficiency. Additionally, there were several changes in the clinical paradigms in imaging and treatment that led to protocol amendments to ensure maximum equipoise, recruitment, and impact of the study. Specifically, we amended the trial to add de novo OMPC patients (from initially only recurrent OMPC) and expanded the study to allow up to 10 metastases (from initially five). Finally, in order to maintain local study team engagement, we developed initiatives to maximize collaboration and add value to the overall clinical program through study participation. Full article
Show Figures

Figure 1

20 pages, 4047 KiB  
Article
Effect of N-Acetylcysteine on Sleep: Impacts of Sex and Time of Day
by Priyanka N. Bushana, Michelle A. Schmidt, Kevin M. Chang, Trisha Vuong, Barbara A. Sorg and Jonathan P. Wisor
Antioxidants 2023, 12(5), 1124; https://doi.org/10.3390/antiox12051124 - 19 May 2023
Cited by 2 | Viewed by 21529
Abstract
Non-rapid eye movement sleep (NREMS) is accompanied by a decrease in cerebral metabolism, which reduces the consumption of glucose as a fuel source and decreases the overall accumulation of oxidative stress in neural and peripheral tissues. Enabling this metabolic shift towards a reductive [...] Read more.
Non-rapid eye movement sleep (NREMS) is accompanied by a decrease in cerebral metabolism, which reduces the consumption of glucose as a fuel source and decreases the overall accumulation of oxidative stress in neural and peripheral tissues. Enabling this metabolic shift towards a reductive redox environment may be a central function of sleep. Therefore, biochemical manipulations that potentiate cellular antioxidant pathways may facilitate this function of sleep. N-acetylcysteine increases cellular antioxidant capacity by serving as a precursor to glutathione. In mice, we observed that intraperitoneal administration of N-acetylcysteine at a time of day when sleep drive is naturally high accelerated the onset of sleep and reduced NREMS delta power. Additionally, N-acetylcysteine administration suppressed slow and beta electroencephalographic (EEG) activities during quiet wake, further demonstrating the fatigue-inducing properties of antioxidants and the impact of redox balance on cortical circuit properties related to sleep drive. These results implicate redox reactions in the homeostatic dynamics of cortical network events across sleep/wake cycles, illustrating the value of timing antioxidant administration relative to sleep/wake cycles. A systematic review of the relevant literature, summarized herein, indicates that this “chronotherapeutic hypothesis” is unaddressed within the clinical literature on antioxidant therapy for brain disorders such as schizophrenia. We, therefore, advocate for studies that systematically address the relationship between the time of day at which an antioxidant therapy is administered relative to sleep/wake cycles and the therapeutic benefit of that antioxidant treatment in brain disorders. Full article
(This article belongs to the Special Issue Oxidative Stress in Brain Function)
Show Figures

Figure 1

21 pages, 5602 KiB  
Article
Triplin: Functional Probing of Its Structure and the Dynamics of the Voltage-Gating Process
by Marco Colombini, Kevin Barnes, Kai-Ti Chang, Muhsin H. Younis and Vicente M. Aguilella
Int. J. Mol. Sci. 2022, 23(22), 13765; https://doi.org/10.3390/ijms232213765 - 9 Nov 2022
Cited by 1 | Viewed by 1662
Abstract
Gram-negative bacteria have a large variety of channel-forming proteins in their outer membrane, generally referred to as porins. Some display weak voltage dependence. A similar trimeric channel former, named Triplin, displays very steep voltage dependence, rivaling that responsible for the electrical excitability of [...] Read more.
Gram-negative bacteria have a large variety of channel-forming proteins in their outer membrane, generally referred to as porins. Some display weak voltage dependence. A similar trimeric channel former, named Triplin, displays very steep voltage dependence, rivaling that responsible for the electrical excitability of mammals, and high inter-subunit cooperativity. We report detailed insights into the molecular basis for these very unusual properties explored at the single-molecule level. By using chemical modification to reduce the charge on the voltage sensors, they were shown to be positively charged structures. Trypsin cleavage of the sensor eliminates voltage gating by cleaving the sensor. From asymmetrical addition of these reagents, the positively charged voltage sensors translocate across the membrane and are, thus, responsible energetically for the steep voltage dependence. A mechanism underlying the cooperativity was also identified. Theoretical calculations indicate that the charge on the voltage sensor can explain the rectification of the current flowing through the open pores if it is located near the pore mouth in the open state. All results support the hypothesis that one of the three subunits is oriented in a direction opposite to that of the other two. These properties make Triplin perhaps the most complex pore-forming molecular machine described to date. Full article
(This article belongs to the Special Issue Biophysical Properties of Membrane Proteins)
Show Figures

Figure 1

7 pages, 516 KiB  
Article
Dapsone-Associated Anemia in Heart Transplant Recipients with Normal Glucose-6-Phosphate Dehydrogenase Activity
by Kevin W. Lor, Evan P. Kransdorf, Jignesh K. Patel, David H. Chang, Jon A. Kobashigawa and Michelle M. Kittleson
J. Clin. Med. 2022, 11(21), 6378; https://doi.org/10.3390/jcm11216378 - 28 Oct 2022
Cited by 4 | Viewed by 2115
Abstract
Dapsone is considered an alternative for pneumocystis jirovecii pneumonia (PJP) prophylaxis in sulfa-allergic or -intolerant transplant patients with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Despite normal G6PD activity, anemia can still occur while on dapsone therapy. We retrospectively reviewed heart transplant patients transplanted at [...] Read more.
Dapsone is considered an alternative for pneumocystis jirovecii pneumonia (PJP) prophylaxis in sulfa-allergic or -intolerant transplant patients with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Despite normal G6PD activity, anemia can still occur while on dapsone therapy. We retrospectively reviewed heart transplant patients transplanted at our center between January 2016 and June 2018 and identified those taking dapsone prophylaxis. There were 252 heart transplant recipients at our center between January 2016 and June 2018. 36 patients received dapsone prophylaxis. All had normal G6PD activity assessed prior to dapsone initiation. 8 (22%) patients developed significant anemia attributed to dapsone: 2 were hospitalized for anemia, 1 of whom required blood transfusion. These patients had a median reduction in hemoglobin of 2.1 g/dL from baseline prior to dapsone initiation. Overt evidence of hemolysis was present in six patients. Once dapsone was discontinued, Hgb increased by at least 2 g/dL in a median of 30 days. Anemia from dapsone may occur in a significant proportion of patients despite normal G6PD activity and resulting in significant morbidity. Careful monitoring of transplant recipients on dapsone prophylaxis is warranted, as well as consideration of alternative agents. Full article
Show Figures

Figure 1

19 pages, 1885 KiB  
Article
Gene Expression Profiling of Skeletal Muscles
by Sarah I. Alto, Chih-Ning Chang, Kevin Brown, Chrissa Kioussi and Theresa M. Filtz
Genes 2021, 12(11), 1718; https://doi.org/10.3390/genes12111718 - 28 Oct 2021
Cited by 6 | Viewed by 3506
Abstract
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package [...] Read more.
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differentially expressed genes were filtered using a false discovery rate of less than 0.05 c, a fold-change value of more than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus are coded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathway regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for skeletal muscle specialization, and they may help to explain skeletal muscle susceptibility to disease and drugs and further refine tissue engineering approaches. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 7475 KiB  
Article
Environmentally Relevant Iron Oxide Nanoparticles Produce Limited Acute Pulmonary Effects in Rats at Realistic Exposure Levels
by Chang Guo, Ralf J. M. Weber, Alison Buckley, Julie Mazzolini, Sarah Robertson, Juana Maria Delgado-Saborit, Joshua Z. Rappoport, James Warren, Alan Hodgson, Paul Sanderson, James Kevin Chipman, Mark R. Viant and Rachel Smith
Int. J. Mol. Sci. 2021, 22(2), 556; https://doi.org/10.3390/ijms22020556 - 8 Jan 2021
Cited by 19 | Viewed by 4349
Abstract
Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOxNPs) but their results have been contradictory, with some indicating no or minor effects and [...] Read more.
Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOxNPs) but their results have been contradictory, with some indicating no or minor effects and others finding effects including oxidative stress and inflammation. Most studies, however, did not use materials reflecting the characteristics of FeOxNPs present in the environment. We, therefore, analysed the potential toxicity of FeOxNPs of different forms (Fe3O4, α-Fe2O3 and γ-Fe2O3) reflecting the characteristics of high iron content nano-sized particles sampled from the environment, both individually and in a mixture (FeOx-mix). A preliminary in vitro study indicated Fe3O4 and FeOx-mix were more cytotoxic than either form of Fe2O3 in human bronchial epithelial cells (BEAS-2B). Follow-up in vitro (0.003, 0.03, 0.3 µg/mL, 24 h) and in vivo (Sprague–Dawley rats, nose-only exposure, 50 µg/m3 and 500 µg/m3, 3 h/d × 3 d) studies therefore focused on these materials. Experiments in vitro explored responses at the molecular level via multi-omics analyses at concentrations below those at which significant cytotoxicity was evident to avoid detection of responses secondary to toxicity. Inhalation experiments used aerosol concentrations chosen to produce similar levels of particle deposition on the airway surface as were delivered in vitro. These were markedly higher than environmental concentrations. No clinical signs of toxicity were seen nor effects on BALF cell counts or LDH levels. There were also no significant changes in transcriptomic or metabolomic responses in lung or BEAS-2B cells to suggest adverse effects. Full article
(This article belongs to the Special Issue Toxicology of Metal NPs and OTC)
Show Figures

Figure 1

26 pages, 7635 KiB  
Article
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites
by Kevin M. Tuffy, Rebecca J. Kaddis Maldonado, Jordan Chang, Paul Rosenfeld, Alan Cochrane and Leslie J. Parent
Viruses 2020, 12(11), 1281; https://doi.org/10.3390/v12111281 - 9 Nov 2020
Cited by 23 | Viewed by 4272
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, [...] Read more.
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus. Full article
(This article belongs to the Special Issue Function and Structure of Viral Ribonucleoproteins Complexes)
Show Figures

Figure 1

12 pages, 2480 KiB  
Article
Cytokeratin-8 in Anaplastic Thyroid Carcinoma: More Than a Simple Structural Cytoskeletal Protein
by Dehuang Guo, Qinqin Xu, Sarabjot Pabla, John Koomen, Paul Biddinger, Ashok Sharma, Simarjot Pabla, Rafal Pacholczyk, Chien-Chung Chang, Kevin Friedrich, Kamran Mohammed, Robert C. Smallridge, John A. Copland, Jin-Xiong She and Paul M. Weinberger
Int. J. Mol. Sci. 2018, 19(2), 577; https://doi.org/10.3390/ijms19020577 - 14 Feb 2018
Cited by 14 | Viewed by 5011
Abstract
Anaplastic thyroid carcinoma (ATC) is almost universally fatal. Elevated keratin-8 (KRT8) protein expression is an established diagnostic cancer biomarker in several epithelial cancers (but not ATC). Several keratins, including KRT8, have been suggested to have a role in cell biology beyond that of [...] Read more.
Anaplastic thyroid carcinoma (ATC) is almost universally fatal. Elevated keratin-8 (KRT8) protein expression is an established diagnostic cancer biomarker in several epithelial cancers (but not ATC). Several keratins, including KRT8, have been suggested to have a role in cell biology beyond that of structural cytoskeletal proteins. Here, we provide evidence that KRT8 plays a direct role in the growth of ATCs. Genomic and transcriptomic analysis of >5000 patients demonstrates that KRT8 mutation and copy number amplification are frequently evident in epithelial-derived cancers. Carcinomas arising from diverse tissues exhibit KRT8 mRNA and protein overexpression when compared to normal tissue levels. Similarly, in a panel of patient-derived ATC cell lines and patient tumors, KRT8 expression shows a similar pattern. sh-RNA-mediated KRT8 knockdown in these cell lines increases apoptosis, whereas forced overexpression of KRT8 confers resistance to apoptosis under peroxide-induced cell stress conditions. We further show that KRT8 protein binds to annexin A2, a protein known to mediate apoptosis as well as the redox pathway. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

5 pages, 369 KiB  
Communication
Facilitating a More Efficient Commercial Review Process for Pediatric Drugs and Biologics
by Ryan D. Rykhus, Zachary V. Shepard, Alix Young, Hadley Frisby, Kailee A. Calder, Collin M. Coon, Justin A. Falk, Sydney R. McAndrews, Aspen Turner, Christina Chang, Johanna Michelsohn, Raegan Petch, Sarah M. Dieker, Benjamin H. Markworth, Kevin Alamo-Perez, Aaron J. Hosack, Jacob M. Berg, Christian Schmidt, Joachim Storsberg and Mark A. Brown
Diseases 2018, 6(1), 2; https://doi.org/10.3390/diseases6010002 - 22 Dec 2017
Viewed by 3676
Abstract
Over the past two decades, the biopharmaceutical industry has seen unprecedented expansion and innovation in concert with significant technological advancements. While the industry has experienced marked growth, the regulatory system in the United States still operates at a capacity much lower than the [...] Read more.
Over the past two decades, the biopharmaceutical industry has seen unprecedented expansion and innovation in concert with significant technological advancements. While the industry has experienced marked growth, the regulatory system in the United States still operates at a capacity much lower than the influx of new drug and biologic candidates. As a result, it has become standard for months or even years of waiting for commercial approval by the U.S. Food and Drug Administration. These regulatory delays have generated a system that stifles growth and innovation due to the exorbitant costs associated with awaiting approval from the nation’s sole regulatory agency. The recent re-emergence of diseases that impact pediatric demographics represents one particularly acute reason for developing a regulatory system that facilitates a more efficient commercial review process. Herein, we present a range of initiatives that could represent early steps toward alleviating the delays in approving life-saving therapeutics. Full article
(This article belongs to the Special Issue Pediatric Diseases)
Show Figures

Figure 1

12 pages, 1270 KiB  
Article
Inhibition of Neoplastic Transformation and Chemically-Induced Skin Hyperplasia in Mice by Traditional Chinese Medicinal Formula Si-Wu-Tang
by Mandy M. Liu, Kevin M. Huang, Steven Yeung, Andy Chang, Suhui Zhang, Nan Mei, Cyrus Parsa, Robert Orlando and Ying Huang
Nutrients 2017, 9(3), 300; https://doi.org/10.3390/nu9030300 - 18 Mar 2017
Cited by 6 | Viewed by 6780
Abstract
Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT), comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous [...] Read more.
Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT), comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT’s activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF)-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in ‘Sensitivity to Carcinogenesis’ (SENCAR) mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA), and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB. Full article
(This article belongs to the Special Issue Antioxidants in Health and Disease)
Show Figures

Figure 1

7 pages, 353 KiB  
Communication
Diffusion MRI Characteristics after Concurrent Radiochemotherapy Predicts Progression-Free and Overall Survival in Newly Diagnosed Glioblastoma
by Warren Chang, Whitney B. Pope, Robert J. Harris, Anthony J. Hardy, Kevin Leu, Reema R. Mody, Phioanh L. Nghiemphu, Albert Lai, Timothy F. Cloughesy and Benjamin M. Ellingson
Tomography 2015, 1(1), 37-43; https://doi.org/10.18383/j.tom.2015.00115 - 1 Sep 2015
Cited by 9 | Viewed by 808
Abstract
The standard of care for newly diagnosed glioblastoma (GBM) is surgery first, radiotherapy (RT) with concurrent temozolomide (TMZ) second, and adjuvant TMZ last. We hypothesized patients with low diffusivity measured using apparent diffusion coefficient (ADC) histogram analysis evaluated after RT + TMZ and [...] Read more.
The standard of care for newly diagnosed glioblastoma (GBM) is surgery first, radiotherapy (RT) with concurrent temozolomide (TMZ) second, and adjuvant TMZ last. We hypothesized patients with low diffusivity measured using apparent diffusion coefficient (ADC) histogram analysis evaluated after RT + TMZ and before adjuvant TMZ would have a significantly shorter progression-free survival (PFS) and overall survival (OS). To test this hypothesis, we evaluated 120 patients with newly diagnosed GBM receiving RT + TMZ followed by adjuvant TMZ. Magnetic resonance imaging was performed after completing RT + TMZ and before initiating adjuvant TMZ. A double Gaussian mixed model was used to describe the ADC histograms within the enhancing tumor, where ADCL and ADCH were defined as the mean ADC value of the lower and higher Gaussian distribution, respectively. An ADCL value of 1.0 μm2/ms and ADCH value of 1.6 μm2/ms were used to stratify patients into high- and low-risk categories. Results suggested that patients with a low ADCL had a significantly shorter PFS (Cox hazard ratio = 0.12, P = 0.0006). OS was significantly shorter with low ADCL tumors, showing a median OS of 407 versus 644 days (Cox hazard ratio = 0.31, P = 0.047). ADCH did not predict PFS or OS when accounting for age and ADCL. In summary, after completing RT + TMZ, newly diagnosed glioblastoma patients with a low ADCL are likely to progress and die earlier than patients with a higher ADCL. ADC histogram analysis may be useful for patient-risk stratification after completing RT + TMZ. Full article
Back to TopTop