Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Keith Bergeron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5716 KiB  
Article
The Investigation of the Mechanical Behavior of a Braided Parachute Suspension Line Using a Mesomechanical Finite Element Model
by Catherine P. Barry, Keith Bergeron, Scott E. Stapleton, David J. Willis, Gregory Noetscher, Christine Charrette and James A. Sherwood
Textiles 2025, 5(2), 10; https://doi.org/10.3390/textiles5020010 - 26 Mar 2025
Viewed by 1099
Abstract
Parachute suspension lines shed vortices during descent, and these vortices develop oscillating aerodynamic forces that can induce forced parasitic vibrations of the lines, which can have an adverse impact on the parachute system. Understanding the line’s mechanical behavior can assist in studying the [...] Read more.
Parachute suspension lines shed vortices during descent, and these vortices develop oscillating aerodynamic forces that can induce forced parasitic vibrations of the lines, which can have an adverse impact on the parachute system. Understanding the line’s mechanical behavior can assist in studying the vibrations experienced by the suspension lines. A well-calibrated structural model of the suspension line could be used to help to identify how the braid’s architecture contributes to its mechanical behavior and to explore if and how a suspension line can be designed to mitigate these parasitic vibrations. In the current study, a mesomechanical finite element model of a polyester braided parachute suspension line was constructed. The line geometry was built in the Virtual Textile Morphology Suite (VTMS), and a user material model (UMAT) was implemented in LS-DYNA® release 14 to describe the material behavior of the individual tows. The material properties were initially calibrated using experimental tension tests on individual tows, which exhibited an initial modulus of ~4100 MPa before transitioning to ~3200 MPa at a stress of 30 MPa. When these properties were applied to the full braid model, slight adjustments were made to account for geometric complexities in the braid structure, improving the correlation between the model and experimental tensile tests. The final calibrated model captured the bilinear tensile behavior of the braid, with an initial modulus of 2219 MPa and a secondary modulus of 1350 MPa, compared to experimental values of 2253 MPa and 1420 MPa, respectively, showing 2% and 5% differences. The calibrated model of the braided cord was then subjected to torsion, and the results showed good agreement with dynamic and static experimental torsion tests, with a difference of 8–19% for dynamic tests and 13–27% for static tests when compared to experimental values. The availability of virtual models of suspension lines can ultimately assist in the design of suspension lines that mitigate flow-induced vibration. Full article
Show Figures

Figure 1

17 pages, 5867 KiB  
Article
Simulation and Stability Analysis of a Coupled Parachute–Payload System
by Keith Bergeron, Mehdi Ghoreyshi and Adam Jirasek
Aerospace 2025, 12(2), 116; https://doi.org/10.3390/aerospace12020116 - 31 Jan 2025
Viewed by 1227
Abstract
High-fidelity simulations are used to study the stability of a coupled parachute–payload system in different configurations. A 8.53 m ring–slot canopy is attached to two separate International Organization for Standardization (ISO) container payloads representing a Twenty Foot Equivalent (TEU). To minimize risk and [...] Read more.
High-fidelity simulations are used to study the stability of a coupled parachute–payload system in different configurations. A 8.53 m ring–slot canopy is attached to two separate International Organization for Standardization (ISO) container payloads representing a Twenty Foot Equivalent (TEU). To minimize risk and as an alternative to a relatively expensive traditional test program, a multi-phase design and evaluation program using computational tools validated for uncoupled parachute system components was completed. The interaction of the payload wake suspended at different locations and orientations below the parachute were investigated to determine stability characteristics for both subsonic and supersonic freestream conditions. The DoD High-Performance Computing Modernization Program CREATETM-AV Kestrel suite was used to perform CFD and fluid–structure interaction (FSI) simulations using both delayed detached-eddy simulations (DDES) and implicit Large Eddy Simulations (iLES). After analyzing the subsonic test cases, the simulations were used to predict the coupled system’s response to the supersonic flow field during descent from a high-altitude deployment, with specific focus on the effect of the payload wake on the parachute bow shock. The FSI simulations included structural cable element modeling but did not include aerodynamic modeling of the suspension lines or suspension harness. The simulations accurately captured the turbulent wake of the payload, its coupling to the parachute, and the shock interactions. Findings from these simulations are presented in terms of code validation, system stability, and drag performance during descent. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 7997 KiB  
Article
High-Fidelity Simulations of Flight Dynamics and Trajectory of a Parachute–Payload System Leaving the C-17 Aircraft
by Mehdi Ghoreyshi, Keith Bergeron and Jürgen Seidel
Aerospace 2024, 11(10), 827; https://doi.org/10.3390/aerospace11100827 - 9 Oct 2024
Cited by 1 | Viewed by 1509
Abstract
This article examines the flight dynamics and trajectory analysis of a parachute–payload system deployed from a C-17 aircraft. The aircraft is modeled with an open cargo door, extended flaps, and four turbo-fan engines operating at an altitude of 2000 feet Above Ground Level [...] Read more.
This article examines the flight dynamics and trajectory analysis of a parachute–payload system deployed from a C-17 aircraft. The aircraft is modeled with an open cargo door, extended flaps, and four turbo-fan engines operating at an altitude of 2000 feet Above Ground Level (AGL) and an airspeed of 150 knots. The payloads consist of simplified CONEX containers measuring either 192 inches or 240 inches in length, 9 feet in width, and 5.3 feet in height, with their mass and moments of inertia specified. At positive deck angles, gravitational forces cause these payloads to begin a gradual descent from the rear of the aircraft. For aircraft at zero deck angle, a ring-slot parachute with approximately 20% geometric porosity is utilized to extract the payload from the aircraft. This study specifically employs the CREATE-AV Kestrel simulation software to model the chute-payload system. The extraction and suspension lines are represented using Kestrel’s Catenary capability, with the extraction line connected to the floating confluence points of the CONEX container and the chute. The chute and payload will experience coupled motion, allowing for an in-depth analysis of the flight dynamics and trajectory of both elements. The trajectory data obtained will be compared to that of a payload (without chute and cables) exiting the aircraft at positive deck angles. An adaptive mesh refinement technique is applied to accurately capture the engine exhaust flow and the wake generated by the C-17, chute, and payloads. Friction and ejector forces are estimated to align the exit velocity and timing with those recorded during flight testing. The results indicate that the simulation of extracted payloads aligns with expected trends observed in flight tests. Notably, higher deck angles result in longer distances from the ramp, leading to increased exit velocities and reduced payload rotation rates. All payloads exhibit clockwise rotation upon leaving the ramp. The parachute extraction method yields significantly higher exit velocities and shorter exit times, while the payload-chute acceleration correlates with the predicted drag of the chute as demonstrated in prior studies. Full article
Show Figures

Figure 1

20 pages, 17070 KiB  
Article
Computational Study of Propeller–Wing Aerodynamic Interaction
by Pooneh Aref, Mehdi Ghoreyshi, Adam Jirasek, Matthew J. Satchell and Keith Bergeron
Aerospace 2018, 5(3), 79; https://doi.org/10.3390/aerospace5030079 - 25 Jul 2018
Cited by 51 | Viewed by 27247
Abstract
Kestrel simulation tools are used to investigate the mutual interference between the propeller and wing of C130J aircraft. Only the wing, nacelles, and propeller geometries are considered. The propulsion system modelled is a Dowty six-bladed R391 propeller mounted at inboard or outboard wing [...] Read more.
Kestrel simulation tools are used to investigate the mutual interference between the propeller and wing of C130J aircraft. Only the wing, nacelles, and propeller geometries are considered. The propulsion system modelled is a Dowty six-bladed R391 propeller mounted at inboard or outboard wing sections in single and dual propeller configurations. The results show that installed propeller configurations have asymmetric blade loadings such that downward-moving blades produce more thrust force than those moving upward. In addition, the influence of installed propeller flow-fields on the wing aerodynamic (pressure coefficient and local lift distribution) are investigated. The installed propeller configuration data are compared with the non-installed case, and the results show that propeller effects will improve the wing’s lift distribution. The increase in lift behind the propeller is different at the left and right sides of the propeller. In addition, the propeller helps to delay the wing flow separation behind it for tested conditions of this work. Finally, the results show the capability of Kestrel simulation tools for modeling and design of propellers and investigates their effects over aircraft during conceptual design in which no experimental or flight test data are available yet. This will lead to reducing the number of tests required later. Full article
(This article belongs to the Special Issue Computational Aerodynamic Modeling of Aerospace Vehicles)
Show Figures

Graphical abstract

Back to TopTop