Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Judith Kelner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 646 KiB  
Article
Convolutional Extreme Learning Machines: A Systematic Review
by Iago Richard Rodrigues, Sebastião Rogério da Silva Neto, Judith Kelner, Djamel Sadok and Patricia Takako Endo
Informatics 2021, 8(2), 33; https://doi.org/10.3390/informatics8020033 - 13 May 2021
Cited by 22 | Viewed by 6736
Abstract
Much work has recently identified the need to combine deep learning with extreme learning in order to strike a performance balance with accuracy, especially in the domain of multimedia applications. When considering this new paradigm—namely, the convolutional extreme learning machine (CELM)—we present a [...] Read more.
Much work has recently identified the need to combine deep learning with extreme learning in order to strike a performance balance with accuracy, especially in the domain of multimedia applications. When considering this new paradigm—namely, the convolutional extreme learning machine (CELM)—we present a systematic review that investigates alternative deep learning architectures that use the extreme learning machine (ELM) for faster training to solve problems that are based on image analysis. We detail each of the architectures that are found in the literature along with their application scenarios, benchmark datasets, main results, and advantages, and then present the open challenges for CELM. We followed a well-structured methodology and established relevant research questions that guided our findings. Based on 81 primary studies, we found that object recognition is the most common problem that is solved by CELM, and CCN with predefined kernels is the most common CELM architecture proposed in the literature. The results from experiments show that CELM models present good precision, convergence, and computational performance, and they are able to decrease the total processing time that is required by the learning process. The results presented in this systematic review are expected to contribute to the research area of CELM, providing a good starting point for dealing with some of the current problems in the analysis of computer vision based on images. Full article
(This article belongs to the Special Issue Feature Paper in Informatics)
Show Figures

Figure 1

34 pages, 457 KiB  
Article
When 5G Meets Deep Learning: A Systematic Review
by Guto Leoni Santos, Patricia Takako Endo, Djamel Sadok and Judith Kelner
Algorithms 2020, 13(9), 208; https://doi.org/10.3390/a13090208 - 25 Aug 2020
Cited by 47 | Viewed by 8505
Abstract
This last decade, the amount of data exchanged on the Internet increased by over a staggering factor of 100, and is expected to exceed well over the 500 exabytes by 2020. This phenomenon is mainly due to the evolution of high-speed broadband Internet [...] Read more.
This last decade, the amount of data exchanged on the Internet increased by over a staggering factor of 100, and is expected to exceed well over the 500 exabytes by 2020. This phenomenon is mainly due to the evolution of high-speed broadband Internet and, more specifically, the popularization and wide spread use of smartphones and associated accessible data plans. Although 4G with its long-term evolution (LTE) technology is seen as a mature technology, there is continual improvement to its radio technology and architecture such as in the scope of the LTE Advanced standard, a major enhancement of LTE. However, for the long run, the next generation of telecommunication (5G) is considered and is gaining considerable momentum from both industry and researchers. In addition, with the deployment of the Internet of Things (IoT) applications, smart cities, vehicular networks, e-health systems, and Industry 4.0, a new plethora of 5G services has emerged with very diverging and technologically challenging design requirements. These include high mobile data volume per area, high number of devices connected per area, high data rates, longer battery life for low-power devices, and reduced end-to-end latency. Several technologies are being developed to meet these new requirements, and each of these technologies brings its own design issues and challenges. In this context, deep learning models could be seen as one of the main tools that can be used to process monitoring data and automate decisions. As these models are able to extract relevant features from raw data (images, texts, and other types of unstructured data), the integration between 5G and DL looks promising and one that requires exploring. As main contribution, this paper presents a systematic review about how DL is being applied to solve some 5G issues. Differently from the current literature, we examine data from the last decade and the works that address diverse 5G specific problems, such as physical medium state estimation, network traffic prediction, user device location prediction, self network management, among others. We also discuss the main research challenges when using deep learning models in 5G scenarios and identify several issues that deserve further consideration. Full article
(This article belongs to the Special Issue Networks, Communication, and Computing Vol. 2)
Show Figures

Figure 1

Back to TopTop