
  informatics

Article

Convolutional Extreme Learning Machines:
A Systematic Review

Iago Richard Rodrigues 1,* , Sebastião Rogério da Silva Neto 2 , Judith Kelner 1 , Djamel Sadok 1 and
Patricia Takako Endo 2,*

����������
�������

Citation: Rodrigues, I.R.; da Silva

Neto, S.R.; Kelner, J.; Sadok, D.;

Endo, P.T. Convolutional Extreme

Learning Machines: A Systematic

Review. Informatics 2021, 8, 33.

https://doi.org/10.3390/

informatics8020033

Academic Editor: Antony Bryant

Received: 1 April 2021

Accepted: 5 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife 50670-420, Brazil;
jk@cin.ufpe.br (J.K.); jamel@cin.ufpe.br (D.S.)

2 Programa de Pós-Graduação em Engenharia da Computação, Universidade de Pernambuco (UPE),
Recife 50050-000, Brazil; srsn@ecomp.poli.br

* Correspondence: irrs@cin.ufpe.br (I.R.R.); patricia.endo@upe.br (P.T.E.)

Abstract: Much work has recently identified the need to combine deep learning with extreme learn-
ing in order to strike a performance balance with accuracy, especially in the domain of multimedia
applications. When considering this new paradigm—namely, the convolutional extreme learning
machine (CELM)—we present a systematic review that investigates alternative deep learning archi-
tectures that use the extreme learning machine (ELM) for faster training to solve problems that are
based on image analysis. We detail each of the architectures that are found in the literature along
with their application scenarios, benchmark datasets, main results, and advantages, and then present
the open challenges for CELM. We followed a well-structured methodology and established relevant
research questions that guided our findings. Based on 81 primary studies, we found that object
recognition is the most common problem that is solved by CELM, and CCN with predefined kernels
is the most common CELM architecture proposed in the literature. The results from experiments
show that CELM models present good precision, convergence, and computational performance,
and they are able to decrease the total processing time that is required by the learning process. The
results presented in this systematic review are expected to contribute to the research area of CELM,
providing a good starting point for dealing with some of the current problems in the analysis of
computer vision based on images.

Keywords: convolutional extreme learning machine; deep learning; multimedia analysis

1. Introduction

Because of the growth of image analysis-based applications, researchers have adopted
deep learning to develop intelligent systems that provide learning tasks in computer vision,
image processing, text recognition, and other signal processing problems. Deep learning
architectures are generally a good solution for learning on large-scale data, surpassing
classic models that were once the state of the art in multimedia problems [1].

Unlike classic approaches to pattern recognition tasks, convolutional neural networks
(CNNs), a type of deep learning, can perform the process of extracting features and, at
the same time, recognize these features. CNNs can process data that are stored as multi-
dimensional arrays (1D, 2D, and so on). They extract meaningful abstract representations
from raw data [1], such as images, audio, text, video, and so on. CNNs have also received
attention in the last decade due to their success in fields such as image classification [2],
object detection [3], semantic segmentation [4], and medical applications that support a
diagnosis by signals or images [5].

Despite their benefits, CNNs also suffer from some challenges: they incur a high
computational cost, which has a direct impact on training and inference times. Classifica-
tion time is an issue for real-time applications that tolerate a minimal loss of information.
Another challenge is the long training and testing times if we consider a computer with
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limited hardware resources. Local minima, intensive human intervention, and vanishing
gradients are other problems [6]. Therefore, it is necessary to investigate alternative ap-
proaches that may extract deep feature representation and, at the same time, reduce the
computational cost.

The extreme learning machine (ELM) is a type of single-layer feed-forward neural
network (SLFN) [7] that provides a faster convergence training process and does not require
a series of iterations to adjust the weights of the hidden layers. According to [8], it “seems
that ELM performs better than other conventional learning algorithms in applications with higher
noise”, presenting similar or better generalizations in regression and classification tasks.
Unlike others, an ELM model executes a single hidden layer of neurons with random
feature mapping, providing a faster learning execution. The low computational complexity
has attracted a great deal of attention from the research community, especially for high-
dimensional and large data applications [9].

A new neural network paradigm was proposed based on the strengths of CNNs and
ELMs: the convolutional extreme learning machine (CELM) [10]. CELMs are quick-training
CNNs that avoid gradient calculations to update the network weights. Filters are efficiently
defined for the feature extraction step, and least-squares are used to obtain weights in the
classification stage’s output layer through an ELM network architecture. In most cases, the
accuracy that is achieved by CELMs is not the best of all approaches [10]; however, the
results are very competitive when compared to those that are obtained by convolutional
networks, in terms of not only accuracy, but also training and inference time.

Some work in the literature has presented a survey of the ELM from different per-
spectives. Huang et al. [11] presented a survey of the ELM and its variants. They focused
on describing the fundamental design principles and learning theories. The main ELM
variants that are presented by the authors are: (i) the batch learning mode of the ELM, (ii)
fully complex ELM, (iii) online sequential ELM, (iv) incremental ELM, and (v) ensemble
of ELM. Cao et al. [8] presented a survey on the ELM while mainly considering high-
dimensional and large-data applications. The work in the literature can be classified into
image processing, video processing, and medical signal processing. Huang et al. [12]
presented trends in the ELM, including ensembles, semi-supervised learning, imbalanced
data, and applications, such as computer vision and image processing. Salaken et al. [13]
explored the ELM in conjunction with transfer learning algorithms. Zhang et al. [14]
presented current approaches that are based on the multilayer ELM (ML-ELM) and its
variants as compared to classical deep learning.

However, despite the existence of some ELM surveys, none of them have specifically
focused on the CELM. Therefore, in contrast to the existing literature, we present a sys-
tematic review that concentrates on the CELM applied in the context of (i) the usage of
deep feature representation through convolution operations and (ii) the usage of ELM with
the aim of achieving fast feature learning in/after the convolution stage. We discuss the
proposed architectures, the application scenarios, the benchmark datasets, the principal
results and advantages, and the open challenges in the CELM field.

The rest of this work is organized, as follows: Section 2 presents the methodology that
was adopted to conduct this systematic review. The overview of the primary studies of
this systematic review is presented in Section 3. Sections 4–7 present the answers for each
research question defined in the systematic review protocol. Finally, we conclude this work
in Section 8.

2. Methodology

We adopted the methodology previously used by Endo et al. [15] and Coutinho et al. [16]
to perform the systematic review. The mentioned systematic review protocol was originally
inspired by the classic protocol that was proposed by Kitchenham [17]. Figure 1 illustrates
the methodology that was adopted in this work. Next, we explain each of these steps.
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Figure 1. Methodology to select papers in this systematic review.

Identify need of review: because of the growth of image and big data applications,
both academia and industry use deep learning to analyze data and extract relevant infor-
mation. For large networks, deep learning architectures suffer drawbacks, such as high
computational cost, slow convergence, vanishing gradients, and hardware limitations for
training.

In this systematic review, we mainly investigate the use of the CELM as a viable alter-
native for deep learning architectures while guaranteeing quick-training and avoiding the
necessity of gradient calculations to update the network’s weights. In recent years, CELMs
have solved some of the leading deep learning issues while maintaining a reasonable
quality of solutions in many applications.

Define research questions: we begin our work with the definition of four research
questions (RQ) that are related to our topic of study. Our objective is to answer these
research questions to raise a discussion of the current state of the art in the usage of the
CELM in the specific domain of image analysis. The research questions are as follows:

• RQ 1: What are the most common problems based on image analysis and datasets
analyzed in the context of the CELM?

• RQ 2: How are the CELM architectures defined in the analyzed work?
• RQ 3: Which are the main findings when applying the CELM to problems based on

image analysis?
• RQ 4: What are the main open challenges in applying the CELM to problems based

on image analysis?

Define search string: to find articles related to our RQs, it was necessary to define a
suitable search string to be used in the adopted search sources. To create such a search
string, we defined terms and synonyms related to the scope of this research. The search
string that was defined was "(("ELM" OR "extreme learning machine" OR "extreme learning
machines") AND ("image recognition" OR "image classification" OR "object recognition" OR
"object classification" OR "image segmentation"))".

Define sources of research: we adopted the following traditional search sources
(databases) to find articles: IEEE Xplore (https://www.ieeexplore.ieee.org/), Springer Link

https://www.ieeexplore.ieee.org/
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(https://link.springer.com/), ACM Digital Library (https://dl.acm.org/), Science Direct
(https://www.sciencedirect.com/), SCOPUS (https://www.scopus.com/), and Web of
Science (https://www.webofknowledge.com).

Because we considered the four primary databases (IEEE Xplore, Springer Link, ACM
DL, and Science Direct) and two meta-databases (SCOPUS and Web of Science), we first
selected the articles from the primary databases because the meta-databases provided some
duplicate results.

Define criteria for inclusion and exclusion: we defined criteria for the inclusion and
exclusion of articles in this systematic review with the aim of obtaining only articles within
the scope of this research. The criteria were, as follows:

• primary studies published in peer-reviewed journals or conferences (congress, sym-
posium, workshop, etc.);

• work that answers one or more of the RQs defined in this systematic review;
• work published from 2010 to 2020;
• work published in English; and,
• work accessible or freely available (using a university proxy) from the search sources

used in this project.

Identify primary studies: we identified the primary studies according to the inclusion
and exclusion criteria.

Extract relevant information: we extracted relevant information from the primary
studies by reading the entire paper and answering the RQs.

Present an overview of the studies: in this step, we present a general summary of
the primary studies that were selected in the systematic review. The overview information
includes the percentage of the year of publication of the articles and the database from
which they were obtained. Section 3 presents the overview of the studies.

Present the results of the research questions: considering the research questions, we
present the answers found from the analysis of the selected articles. The answers to the
defined research questions are the main contribution of this systematic review. Sections 4–7
present the results of this step.

3. Overview of the Primary Studies

Table 1 presents the number of studies before and after applying the inclusion criteria.
A total of 2220 articles were returned from the six databases. After removing duplicate
articles and applying the inclusion criteria, 81 articles remained, which corresponded to
3.74% of the total articles that were found in the search.

Table 1. Search results obtained before and after refinement by inclusion and exclusion criteria.

Database Original Search After Primary Studies Identification

ACM DL 91 3
IEEE Xplore 123 19

Science Direct 54 6
Springer Link 992 30

SCOPUS 616 19
Web of Science 344 4

We selected 30 papers from Springer Link, and this was the database with the most pri-
mary studies returned. IEEE Xplore returned the second-highest number of primary studies,
at 19. Science Direct and ACM returned six and three studies, respectively. Additionally,
we can see the importance of using meta-databases in this study, as the meta-databases
also returned important studies (19 from SCOPUS and four from Web of Science).

Regarding the primary studies identified, Figure 2 illustrates the percentage of publi-
cations of these studies per year. Although we established a time range between 2010 to
2020, articles on the CELM began to be published in 2015. A probable explanation for this

https://link.springer.com/
https://dl.acm.org/
https://www.sciencedirect.com/
https://www.scopus.com/
https://www.webofknowledge.com
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is that the first consolidation of DL in the literature and multimedia applications, in general,
was in this year. During this consolidation, several alternatives to conventional CNNs were
proposed, such as a CNN with many layers [18], residual CNN networks [19], networks
with batch normalization [20], dropout [21], and other advances [22]. Besides, researchers
aimed to find alternatives with a better generalization capacity and better training and
classification time when CELM variations were proposed. The next sections present the
analysis and discussion of each research question proposed in this systematic review.

Figure 2. Articles distribution by publication year.

4. Common Problems and Datasets

From the primary studies, the main machine learning problems for multimedia analy-
sis can be divided into two main groups: image classification and semantic segmentation.

Eighty studies were found to be related to image classification. Image classification
is the process of labeling images according to the information present in these images [2],
and it is performed by recognizing patterns. The classification process usually analyzes
an image and associates it with a label describing an object. Image classification may be
performed through manual feature extraction and classical machine learning algorithms or
deep learning architectures, which learn patterns in the feature extraction process.

Only one study [23] covered semantic segmentation. Semantic segmentation in images
consists of categorizing each pixel present in the image [4]. The learning models are trained
from ground truth information, which are annotations equivalent to each pixel’s category
pertinence of the input image. This model type’s output is the segmented image, with each
pixel adequately assigned to an object.

The triviality of implementing the CELM models for the first purpose is the factor that
may explain the high difference in the number of studies for image classification instead of
semantic segmentation. For the image classification task, the architectures are stacked with
convolutional layers, pooling, and ELM concepts placed sequentially (see more details in
RQ 2). This fact facilitates the implementation of the CELM models.

Models for semantic segmentation need other concepts to be effective. In semantic
segmentation, it is necessary to make predictions at the pixel level, which requires the
convolution and deconvolution steps to reconstruct the output images. These concepts
may be targeted by researchers in the future.

Note that object detection is also a common problem in the computer vision field, but
we did not find studies solving object detection using CELM concepts in this systematic review.
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We found 19 different scenarios from the primary studies, but most of them contained
four or fewer related studies. Thus, we highlight the six main application scenarios, and the
others are demarcated in a single group (Others), as shown in Figure 3. The six main CELM
application scenarios that were found among the primary studies were object recognition,
remote sensing, medicine, handwritten digit recognition, RGB-D image recognition, and
face recognition, totaling 69 articles, or about 83% of the total primary studies.

Figure 3. Main application scenarios of CELM.

4.1. Object Recognition

Object recognition is one of the most common problems addressed in the primary
studies found in this systematic review. Object recognition consists of classifying objects in
scenes and it is not a trivial task. Generally, the dataset that makes up an object recognition
problem comprises several elements divided by classes. The variation is realized in the
object positions, lighting conditions, and so on. We found 18 studies dealing with object
recognition—approximately 21% of the primary studies.

Among the primary studies, we found nine different object recognition datasets:
NORB, CIFAR-10, CIFAR-100, Sun-397, COIL, ETH-80, Caltech, GERMS, and DR. These
datasets, in general, have a wide range of classes, hampering the ability to generalize
machine learning models. Therefore, if a proposed model obtains expressive results using
large datasets for object recognition, there is strong evidence that this model presents a
good generalization capacity.

Table 2 shows the reported datasets for object recognition and their respective refer-
ences. Most of the studies use the NORB and CIFAR-10 datasets (representing more than
50% of usage). Note that some studies use more than one dataset for training and testing
their models. Next, we present a brief description of the main datasets that are found for
object recognition.
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Table 2. Datasets for object recognition reported in the primary studies.

Dataset References

NORB [6,24–30]
CIFAR-10 [24,27,29,31–35]
CALTECH [28,35–37]
COIL [25,29,34]
CIFAR-100 [33,35]
ETH-80 [25,34]
SUN-397 [33]
GERMS [38]
DR [39]

The NYU Object Recognition Benchmark (NORB) dataset [40] is composed of 194,400 im-
ages that are pairs of stereo images from five generic categories under different angles,
light setups, and poses. The variations consist of 36 azimuths, nine elevations, and six
light setups.

The Canadian Institute For Advanced Research (CIFAR-10) [41] is a dataset that
contains 60,000 tiny images of 32 × 32 in size divided into 10 classes of objects, with
6000 images per class. Additionally, CIFAR-100 contains 100 classes of objects, with
600 images per class. The default split protocol is 50,000 images for the train and 10,000 for
the test set.

The Columbia University Image Library (COIL) [42] is an object image dataset. There
are two main variations: COIL-20, a dataset that contains 20 different classes of grayscale
images; and, COIL-100, which contains 100 classes of colored images. A total of 7200 images
compose the COIL-100 dataset.

Caltech-101 [43] is a dataset that contains 101 categories. There are 40 to 800 images
per class, and most of the categories contain about 50 images with a size of 300 × 200. The
last version of the dataset is Caltech-256, which contains 256 categories and 30,607 images.

ETH-80 [44] is a dataset that is composed of eight different classes. Each class contains
10 object instances, and 41 images comprise each instance. There is a total of 3280 images
in the dataset.

4.2. Remote Sensing Classification

Remote sensing is information from a geospatial area acquired at a distance. The
most common examples of remote sensing classification data are spectral images, which
are different from ordinary RGB images, since they carry data about infrared, ultraviolet,
and so on. With this type of information, it is possible to obtain a more detailed map-
ping of a remote sensing area. The other variation of data for remote sensing is called
hyperspectral imaging [45], which, in addition to spectrum information, also considers
digital photographs. The CELM has been used as an alternative solution in remote sensing
classification because deep learning models generally require high processing power for
this type of application. In this systematic review, we reported a total of 13 studies that
applied the CELM for remote sensing classification.

Table 3 shows the seven datasets used for remote sensing classification found in our
primary studies. The two main datasets were Pavia (eight studies) and Indian pines (six
studies), comprising about 60.9% of the total. The other datasets were Salinas, MSTAR,
UCM, AID, and R+N. Next, we present a brief description of the main datasets.
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Table 3. The datasets for remote sensing classification reported in the primary studies.

Dataset References

Pavia [46–53]
Indian Pines [46–48,50,51,54]
Salinas [46,47,49,53]
MSTAR [55,56]
UCM [57]
AID [57]
R+N [57]

The Pavia dataset [58] is composed of nine different classes of scenes that were
obtained by the ROSIS sensor (https://www.uv.es/leo/daisex/Sensors/ROSIS.htm), and
the total number of spectral bands is 205. In the dataset, there are images with sizes of
1096 × 1096 pixels and 610 × 610 pixels.

The Indian Pines dataset [58] consists of scenes that were collected by the AVIRIS
sensor (https://aviris.jpl.nasa.gov/). The data size corresponds to 145 × 145 pixels and
there are 224 bands of spectral reflectance. The Indian Pines scenes contain scenes of
agriculture and forests. There is also an immense amount of geographic data on houses,
roads, and railways.

Like the Indian Pines dataset, the Salinas dataset [58] was collected by the 224-band
AVIRIS sensor. The Salinas dataset contains a high spatial resolution with 3.7 meter pixels.
The area covered comprises 512 lines by 217 samples. The dataset contains 16 ground-
truthed classes.

Moving and Stationary Target Acquisition and Recognition (MSTAR) is a dataset [59]
that contains baseline X-band SAR imagery of 13 target types plus minor examples of
articulation, obscuration, and camouflage. The Sandia National Laboratory collected the
dataset and Defense Advanced Research data [60].

4.3. Medicine Applications

There has been an increase in the number of machine learning applications for
medicine. Most of them aim to identify patterns in imaging examinations to support
(not replace) the specialist. Generally, the data used are labeled by medical specialists
in the study field of the disease to be identified. Applications of the CELM models are
made possible because they often surpass traditional models in the classification stage.
All 12 studies that were found in this systematic review aimed to provide support for
decision-making in diagnosing various diseases.

Table 4 shows the 12 applications of the CELM for medicine reported in the primary
studies returned, including tumor classification, anomalies detection, white blood cell
detection, and so on. Brain tumor classification is the application with the largest number
of studies [61–63]. Because of the variety of medical problems, the studies do not use a
common dataset, which makes it difficult to compare them.

https://www.uv.es/leo/daisex/Sensors/ROSIS.htm
https://aviris.jpl.nasa.gov/
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Table 4. Applications in medicine and their datasets reported in the primary studies.

References Approach Dataset

[64] Classification of digestive organs disease Own dataset
[65] Liver tumor classification Elazig University Hospital
[66] White blood cell detection BCCD dataset
[67] Histopathological image classification ADL dataset
[68] Cerebral microbleed diagnosis Own dataset
[69] Cervical cancer classification Herlev dataset
[61] Brain tumor classification CGA-GBM database
[70] Micro-nodules classification LIDC/IDRI dataset
[62] Brain tumor classification Brain T1-weighed CE-MRI dataset
[63] Brain tumor classification Brain tumor MRI dataset
[71] Classification of anomalies in the human retina Duke and HUCM datasets
[72] Hepatocellular carcinoma classification ICPR 2014 HEp-2 cell dataset

4.4. Handwritten Digit and Character Recognition

Similar to the object recognition problem, the handwritten digit and character recogni-
tion problem recurs in digital image processing and pattern recognition benchmarking [73].
Several studies have proposed digit and character recognition for applications, such as
handwriting recognition [73]. Handwritten digit or character recognition can be applied
to several tasks: text categorization from images, classification of documents, signature
recognition, etc. In this systematic review, we found 11 primary studies that applied CELM
in the context of handwritten digit or character recognition.

Table 5 presents the datasets used for handwritten digit recognition found in our
systematic review. MNIST and USPS were the two main datasets for digit recognition, and
EMNIST was the main dataset used for character recognition. Next, we present a brief
description of the two main datasets.

Table 5. The datasets for handwritten digit or character recognition reported in the primary studies.

Dataset References

MNIST [24,27–30,34,74–77]
USPS [27,29,30,76,77]
EMNIST [10]

The Modified National Institute of Standards and Technology (MNIST) [78] dataset
contains 70,000 images that correspond to handwritten numeric figures. It is a variation of
a more extensive database, named NIST, which contains more than 800,000 images with
handwritten characters and numbers provided by more than 3600 writers. The MNIST
contains representative images of 10 classes (digits 0 to 9) with dimensions of 28 × 28.

The US Postal (USPS) dataset [79] is composed of digital images of approximately
5000 city names, 5000 state names, and 10,000 ZIP codes, and 50,000 alphanumeric charac-
ters are included. The images have a size of 16 × 16.

4.5. Face Recognition

Face recognition is commonly present in security systems, tagging people on social
networks, etc. It is also common for several machine learning models to use face recognition
databases as benchmarking [80]. We found eight studies that cover object recognition,
comprising about 9% of the primary studies.

Table 6 presents the 11 datasets that are used for face recognition with CELM models
found in our systematic review. The YALE dataset was the most used, while ORL was used
in two studies.
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Table 6. The datasets for face recognition that were reported in the primary studies.

Dataset References

YALE [26,28,81]
ORL [26,29]
Casia-V4 [82]
CMU-PIE [30]
XM2VTS [81]
AR [81]
LFW-a [81]
FERET [81]
Youtube-8M [83]
ChaLearn [84]

The YALE dataset [85] contains 165 images from 15 different people, with 11 images
for each person. Each image contains different expressions, such as happy, sad, sleeping,
winking, etc.

The ORL face dataset [86] is composed of 400 images with a size of 112 × 92. There
are 40 persons, with 10 images per person. Like the YALE dataset, there are different
expressions, lighting setups, and so on.

4.6. RGB-D Image Recognition

RGB-D images are graphical 3D representations of a capture that may be used for
object recognition, motion recognition, and so on. In addition to RGB color images, another
channel (-D) of information that corresponds to depth is added. It is possible to obtain
accurate information on the shape and location of the objects analyzed on the scene. The
low-cost Microsoft Kinect sensor is generally used to capture scenarios and objects. With
that, several machine learning models are currently used for object recognition [87] and
human motion [88], among other applications using data from RGB-D sensors [89]. Seven
studies applied CELM models for the learning process for RGB-D data, representing 8% of
the primary studies.

Table 7 presents the datasets that are used for RGB-D image recognition found in our
systematic review. The Washington RGB-D object was the most used dataset. All of the
other databases were used by only one work: 2D3D object, Sun RGB-D Object, NYU Indoor
Scene, Princeton ModelNet, ShapeNet Core 55, Princeton Shape Benchmark, MIVIA action,
NOTOPS, and SUB Kinect interaction. Next, we present a brief description of the main
dataset: the Washington RGB-D.

Table 7. The datasets for RGB-D image recognition reported in the primary studies.

Dataset References

Washington RGB-D object [90–95]
2D3D object [94]
Sun RGB-D object [94]
NYU indoor scene [94]
Princeton ModelNet [96]
ShapeNet core 55 [96]
Princeton shape benchmark [96]
MIVIA action [97]
NOTOPS [97]
SBU Kinect interaction [97]

The Washington RGB-D Object dataset [98] contains 300 objects that were captured by
a Kinect camera with a 640 × 480 resolution. The objects are organized into 51 categories.
The captures are sequential; that is, three video sequences for each object were recorded.
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4.7. Other Application Scenarios

We also found studies involving scenarios with fewer applications, such as street
applications, factories, food classification, textures, documents, etc. Table 8 summarizes the
complete list of other applications that are found in this systematic review’s primary studies.

Table 8. Other application scenarios found in the primary studies.

Application References

Food classification [31,35,99,100]
Street applications [101–103]
Factory [104–106]
Motion recognition [107–109]
Detection [24,110]
Texture classification [26,111]
Image Segmentation [23]
Document recognition [112]
Criminal investigation [113]
Animal classification [35]
Robotics [114]
Fire detection [115]
Clothes classification [116]

5. CELM Architectures

From the primary studies, we can define two main categories of CELM usage: (i)
studies that use a CNN for feature extraction and the ELM for fast learning on extracted
features and (ii) studies that use the ELM for the fast training CNN architectures. Both of
the approaches can improve training time and multimedia data learning tasks. Figure 4
illustrates a summarization of how CELMs are being used in the current literature.

Figure 4. CELM architectures proposed in the literature.

In the CNN for feature extraction and the ELM for fast learning on extracted features,
the power of representation of the inputs increases with deep features, and the ELM
enables a shorter training time and a high capacity for generalization [6]. There are some
variations of this approach: (i) a CNN can be used for feature extraction using predefined
kernel weights (or filters), in which classic image and signal processing filters are used
(see Section 5.1); and, (ii) a CNN can be used for feature extraction using previously pre-
trained weights, in which the pre-trained weights can be learned in the same or different
application domains (see Sections 5.2 and 5.3).
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The usage of ELM concepts for the fast training of classical CNN architectures involves
using a complete CNN, substituting the training process (see Section 5.4). The training is
no longer done by backpropagation, but by algorithms that are based on the ELM to learn
the features. This change provides a better training time for CNN and it leads to further
improvements.

Figure 5 presents the amount of work for each type of CELM usage. More than half
of the primary studies used a CNN with pre-defined filters to extract features and an
ELM to train the features (about 54%). The other three types of CELM architectures were
distributed in similar quantities. In the following subsections, we discuss how the primary
studies applied these different CELM architectures.

Figure 5. The types of CELM architecture proposed in the literature and the number of primary
studies.

5.1. CNN with Predefined Kernels for Feature Extraction and ELM for Fast Learning

This approach was the broadest and most varied when compared to the others. This is
because there are many architectures that are based on default kernel (or filter) initialization.
In this approach, CNNs are used as feature extractors without any prior training and the fully
connected layer CNN kernels are pre-defined through processing, statistical distribution,
or the decomposition of values, whereas ELMs or their variations replace fully connected
layers. In this approach, the architecture removes backpropagation training and makes the
learning process more simple. Figure 6 shows a generic example of this architecture.

Several kernels can be used in the convolution layers, such as Random, Gabor, PCA,
Patch, and even a combination of these. Some studies have also proposed techniques for
the pre and post-processing of the convolutional layers’ features. Table 9 summarizes the
studies that used CELM with pre-defined kernels from the primary studies. Note that
some of the studies used more than one approach.



Informatics 2021, 8, 33 13 of 33

Figure 6. Example of a CELM architecture composed of a CNN with pre-defined kernels for feature
extraction and an ELM for fast learning. The convolution and pooling layers’ quantities can be varied.
Also, the kernels pre-defined in the convolution layers can be based on different distributions. At the
end of the feature extraction process, an ELM network makes the learning process.

Table 9. Variations of works using CELM with pre-defined kernels. * Note that there are works based
on CNN with random filters + ELM, which we consider as a special case, named ELM-LRF, and
therefore are referred to specifically in Table 10.

Approaches References

CNN with random filters + ELM * [33,47,56,62,72,75,76,92,97,99,109]
CNN with gabor filters + ELM [48,104]
CNN with a combination of filters + ELM [10,107]
Ensemble of CNN with predefined filters + ELM [55,72,75]
Combination of image processing techniques +
CNN with predefined filters + ELM [23,55,92,117]

PCANet + ELM [71,81]

5.1.1. Random Filter

The most used kernel found in the primary studies was the kernel randomly generated
through a Gaussian distribution, or the random filter: [33,47,56,62,72,75,76,92,97,99,109].

There is a particular case of a CELM where the CNN has random, but orthogonalized,
filters, known as the local receptive field-based extreme learning machine (ELM-LRF).
Huang et al. [6] proposed the ELM-LRF, and it is based on the premise that ELM networks
can adapt themselves and achieve good generalization when random features are used
that represent local regions of the input images. The use of the LRF term comes from
CNNs, as they can represent different regions of a given image through their convolutions.
The network structure consists of a convolutional layer, followed by pooling, while an
ELM network is responsible for the training and classification of the extracted features.
The convolution kernels are orthogonalized, employing decomposition by singular values
(SVD). The convolutional layer applies random filters to extract the LRF. Square-root
pooling is applied to reduce the dimensionality of the data. Finally, all of the traditional
learning is performed through the ELM network to calculate the inverse Moore–Penrose
matrix to train the features that are generated by the LRF. There is no hidden layer with
random weights in the classifier, only one layer of output weights.

Several studies have applied the ELM-LRF in its default form for their learning
process [6,25,39,52,53,63,90], along with some other variations of ELM-LRF, as shown in
Table 10.
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Table 10. Variations for ELM-LRF reported in the primary studies.

Approach References

ELM-LRF (default) [6,25,39,52,53,63,90]
Multimodal ELM-LRF [55,91,93,105]
Multiple kernel ELM-LRF [26]
Multilayer ELM-LRF [27,38,51,67,77,114]
Autoencoding ELM-LRF [27,28,93]
Multiscale ELM-LRF [67,106,111]
Recursive ELM-LRF [29]

Some of the studies considered using multiple data sources for parallel feature extrac-
tion with the ELM-LRF to make a unique final decision. These approaches that consider
multiple data sources are named as multimodal [55,91,93,105].

We previously presented some studies that combined different filters in CNNs for
feature extraction. This feature combination approach is also used in the ELM-LRF ar-
chitecture of multiple kernel ELM-LRF [26]. In this work, the authors proposed using a
variation of Gabor filters with random filters and, for this reason, the authors named this
approach ELM-hybrid LRF (HLRF). The authors carried out experiments to define the p
and q values of the Gabor filters and performed an analysis of the number of layers that
provided optimal accuracy values.

The multilayer ELM-LRF is another known ELM-LRF variation that consists of multi-
ple convolution and pooling layers [27,38,51,67,77,114].

Autoencoding ELM-LRF leads to high-level feature representation using ELM-AE
with the ELM-LRF and it was proposed by [27,28,93]. Another notable difference is the
use of three ELM-AEs in parallel for each respective color channel for coding features.
The work [93] proposed a Joint Deep Random Random Convolution and ELM (JDRKC-
ELM) model for the recognition of two data modalities separately (an application of the
ELM-LRF). After feature extraction, the fusion layer that used a coefficient to combine two
feature types and ELM-AE learned top-level resource representations. The ELM classifier
is responsible for the final decision.

Furthermore, some studies considered all the channels or variate scales (multiscale) of
the images by applying different ELM-LRF architectures for feature extraction and learning
tasks [54,67,106,111].

Furthermore, to conclude the ELM-LRF variations, Song et al. [29] presented two
recursive models based on the ELM Random Recursive Constrained (R2CELM) and ELM
based on Random Recursive LRF (R2ELM-LRF), which are constructed by stacking CELM
and ELM-LRF, respectively. Following the concept of stacking generalization, random
projection and kernelization were incorporated in the proposed architectures. R2CELM and
R2ELM-LRF not only fully inherit the merits of ELM, but also advantage of the superiority
of CELM and ELM-LRF in the field of image recognition, respectively. R2CELM and
R2ELM-LRF demonstrated their best performance in precision tests on the six sets of
reference image recognition data in the empirical results.

5.1.2. Gabor Filter

The studies in [48,104] used the Gabor filter, which is considered to be similar to the
human visual system, and it is widely used in general computer vision tasks, not only in
CNNs. The Gabor filter is linear, and it is generally used for analyzing textures in images.
Frequency and orientation attributes are used in Gabor filters. Similar to the random filter,
the Gabor filter that was used in [48,104] obtained a high capacity to represent the data and
it could provide a better generalization of ELM.
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5.1.3. CNN with Combination Filters

Other studies used a combination of different filters in the convolutional layers. In [10],
the authors observed that CELM approaches in the literature have the limitation of using
random filters in only one step of extracting features. Because of the random filtering
usage limitation, the authors propose the combination of the following filters: random
filter, patch filter (sub-regions were chosen from an input image), principal component
analysis (PCA) filters, and the Gabor filter. In [107], the authors apply the Gabor filter with
different values of directions and scales in the first convolutional layer, and the Radial Basis
Filter is applied in the second convolution layer. After each convolution layer, the data are
pooled by pooling layers. Both of the approaches provide a good generalization capacity.

5.1.4. Ensemble of CNN with Pre-Defined Filters

Ensemble approaches of CNNs and ELMs have been considered in [55,72,75]. An
ensemble generally consists of a combination of more than one learning model for a final
decision [118]. Figure 7 illustrates an example of an ensemble of the CELM.

Figure 7. Example of ensemble representation for CELM. Three different CELM architectures are
used for feature extraction and learning process. At the end, an operator is responsible for making
the final classification decision.

In [75], the authors use three CELM architectures combined with the majority voting
ensemble. Each sub-architecture consists of three convolutional layers, with each one
followed by a pooling layer; then, at the end, an ELM is responsible for the training and
classification process. In [72], the authors train three different ELM networks for the
classification process. Each ELM network has, as an input, the last two convolutional layers
and last pooling layer, and an ensemble makes the final decision for these three ELMs. The
work that was presented in [55] was described previously in a multimodal ELM-LRF.

5.1.5. Combination of Image Processing Techniques and CNN with Pre-Defined Filters

In addition to convolutions, pooling, and ELM, some studies also consider image
processing techniques for the pre and post-processing of images or features: [23,55,92,117].
The authors in [92] propose using K-means in the inputs; then, convolution filters are
applied. Spatial Pyramid Pooling and a recursive neural network are applied to the
abstraction of the data that were generated before applying the ELM for training and
classification. In the end, the ELM is used for feature learning and classification. The
approach proposed in [55] consists of the feature extraction by CNN in two types of input:



Informatics 2021, 8, 33 16 of 33

(i) the original image and (ii) the image after the transformation of rotation through fractal
extraction and segmentation. After that, the features are combined and trained by two ELM
networks. The final decision is made by combining the outputs of these ELMs. In [23], the
authors propose the extraction of superpixels using the Simple Linear Iterative Clustering
(SLIC) algorithm. With that, the extraction of candidate regions with their corresponding
labels is completed. The CNN architecture is applied in these candidate regions for feature
extraction, so that the ELM performs the prediction of semantic segmentation in the images.
In [117], the image data are captured, and a search is done for color similarity in the image.
After that, segmentation is applied. Finally, two convolutional layers are applied, with
each one followed by two pooling layers. With that, the data are classified by a KELM (a
ELM with an RBF kernel).

5.1.6. PCANet

The work in [71] presents a classification approach that consists of using the PCANet [119]
network to extract features using the Principal Component Analysis (PCA) algorithm in
convolutions in the images. Subsequently, the ELM with the composition of several kernels
is used for the classification task. The proposed approach presents promising results. The
work in [81] develops a new approach for image classification using a new architecture,
the 2DPCANet—a variant of PCANet. While the original PCANet network performs 1D
transformations for each image line, the 2DPCANet performs 2D transformations in the
entire image. As a result, there is a refinement in the process of extracting features. At
the end of the feature extraction, the training with the ELM network is carried out. The
architecture is evaluated in a different dataset and it shows improved accuracy when
compared to the original architecture.

We observed that all studies in this section use small CNN architectures. The authors
usually do not specify how to define the ideal number of layers and filters. When the
number of layers and filters is increased, the amount of data to be processed by ELM
also increases. In the literature, classic machine learning algorithms tend to perform the
learning task with more difficulty when dealing with a vast amount of data. Besides, the
computational processing time increases in proportion to the complexity of the CNN archi-
tecture. For the reasons that are mentioned above, several studies have proposed simpler
CNN architectures for extracting characteristics, as the objective is to obtain maximum
accuracy without gradually increasing the computational cost.

5.2. Pre-Trained CNN in Other Application Domain for Feature Extraction and ELM for Fast Learning

It is necessary to have large amounts of data and machines with a tremendous com-
putational capacity to train deep learning models. Machines with dedicated hardware
with GPU processing can be used for training such models, but large amounts of data or
resources may not be available for the creation of the models. Therefore, the concept of
transfer learning was proposed to deal with these problems.

In transfer learning, the knowledge learned to perform one task can be used to perform
another task [120]. In this process, the features that one model has learned to perform a
task can be transferred to another model to perform a different task. A minor adjustment
(named fine-tuning) needs to be performed on the last layers of the model (usually the
fully connected layers) [121]. In this systematic review, we reported studies that propose
a fine-tuning approach using an ELM-based classifier. This approach is similar to the
previous ones that were reported in Section 5.1. The difference is that a pre-trained CNN
(generally without the fully connected layers) is used to perform the feature extraction
process. An ELM-based classifier is used to make a new training process with the extracted
features. Note that we name this process as fine-tuning with ELM. Figure 8 illustrates the
transfer learning process with an ELM.
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Figure 8. Example of the usage of pre-trained deep learning architectures and fine tuning with ELM.

We found various studies that use classic deep neural architectures for a transfer
learning task, such as AlexNet, CaffeNet, VGGNet, GoogLeNet, Inception-V3, ResNet, and
SqueezeNet. Furthermore, their own deep pre-trained architectures have been proposed
in some studies for the transfer learning task. Table 11 summarizes the studies that use
pre-trained deep learning architectures and fine-tuning using an ELM.

Table 11. The pre-trained architectures used for fine tuning with ELM reported in the primary
studies.

Pre-Trained Architecture References

AlexNet [57,113]
CaffeNet [69,101,122]
VGGNet [31,57,66,68,69,83,96,100,115]
GoogLeNet [57,66,82]
Inception-V3 [31]
ResNet [31,66,96,100,115]
SqueezeNet [61]

AlexNet is the first deep learning architecture used for transfer learning and fine-
tuning with an ELM that we cover [123]. The AlexNet architecture is one of the pioneers
responsible for popularizing deep learning for image recognition. This architecture has
five consecutive convolutional layers with a filter size equal to 11 and pooling. After
each convolutional layer, the Rectified Linear Unit (ReLU) activation is used to reduce
the classification error. Three fully connected layers are responsible for data classification.
AlexNet was initially trained in the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) dataset using multiple GPUs. The authors adopted the freezing part of the
weights (dropout) and data augmentation to overcome the overfitting problem. The
architecture reached an error of 15.3% in the database used in the year 2012, and it was
much higher than other architectures. With all of the acquired learning, the architecture is
used to extract characteristics and then remove the fully connected layers.

Some studies used the AlexNet architecture with the pre-trained weights in the
ILSVRC dataset in conjunction with ELM networks to replace fully connected layers,
thus achieving fine-tuning [57,113]. There is a variation of the AlexNet model that uses a
unique GPU for training task, and the variation is named CaffeNet [124]. The CaffeNet
model with pre-trained weights in the ILSVRC dataset was also used for feature extraction
and fine-tuning with an ELM [69]. Using CaffeNet, the studies [101,122] presented a new
architecture considering the canonical correlation between visual resources and resources
based on biological information. The use of discriminative locality-preserving canonical
correlation analysis (DLPCAA) was adopted after the feature extraction stage, when
considering the information on the label and preserving the local structures for calculating
correlation. In the second layer, training with ELM was performed, which does not need
many images for training.

VGGNet is another important classic deep learning architecture used for fine-tuning
with an ELM [18]. There are variations of VGGNet, such as VGG-16 and VGG-19, which
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contain several characteristics in common, such as the number of convolutional layers
being varied, all containing three fully connected layers. Firstly, the use of smaller local
receptive fields with kernel sizes equal to three stands out, unlike AlexNet, which has
sizes of 11. VGGNet architectures have five blocks of convolutional layers with ReLU
and pooling, and the number of filters varies from 64 to 512. The architecture has many
convolutional layers that can increase the data representation capacity and successfully
transfer learning applications.

We reported the use of VGG-16 [31,57,66,68,69,115] and VGG-19 [100] architectures
for extracting features and fine-tuning with ELM; all of the previously mentioned studies
used pre-trained weights from the ILSVRC dataset. The work [83] presented an approach
to predict and classify data using a multimodal approach, where video data (frame se-
quencing) and audio are considered. The image data were extracted with the VGG-16 and
the audio data were processed with LSTM. Finally, the data were trained and classified
with an ELM. The authors in [96] presented a computationally efficient method for image
recognition. A new structure of multi-view CNNs and ELM-AE was developed that uses
the composite advantages of the VGG-19 deep architecture with the robust representation
of ELM-AE features and the fast ELM classifier.

GoogLeNet and Inception-V3 are other pre-trained CNN in the ILSVRC database
for feature extraction and fast learning with ELM. The GoogLeNet architecture [125]
makes use of 1 × 1 convolutions coupled in named Inceptions modules, which reduces the
computational cost. Global average pooling is used instead of fully connected layers. This
reduction by global average pooling reduces the representation of the feature maps to a
single value that is directly connected with the softmax layer for class prediction. These
are the studies from this systematic review that use GoogLeNet with pre-trained weights
on the ILSVRC dataset to extract features [57,66,82]. Inception-V3 is an evolution of the
previous model containing regularization, grid size reduction, and factorizing convolutions.
Inception-V3 [126] is also considered to be a good alternative for transfer learning and it
has been considered in the literature for fine-tuning with an ELM [31].

The deep residual network (ResNet) [19] was proposed for ILSVRC 2015 and it was the
winner with a classification error of 3.57%. ResNet contains identity shortcut connections,
which are skipping connections in convolutional layer groups. The idea behind skipping
connections in ResNet is to prevent the network, which is very deep, from dying due to the
gradients evolving. ResNet uses a signal that is the sum of the signal that is produced by the
two previous convolutional layers plus the signal transmitted directly from the point before
these layers. We found several studies that used ResNet for transfer learning using the pre-
trained weights from the ILSVRC dataset in conjunction with an ELM [31,66,96,100,115].

In [127], the deep network SqueezeNet was proposed, which is also used for transfer
learning with the neural network ELM. However, this architecture provided the same
accuracy as AlexNet in the ILSVRC database, with fewer trained parameters. The data were
compressed and processed in Squeeze layers, which were composed of 1 × 1 convolutions.
The data expansion was performed through more convolutional layers with sizes of 1 × 1
and 3 × 3, expanding the local receptive fields. As a result, the architecture is simpler
to process and it provides a good representation of the data. The work in [61] used
SqueezeNet for feature extraction and ELM for training the extracted features. Additionally,
the approach used the Super Resolution Fuzzy-C-Means (SR-FCM) clustering technique
for image segmentation.

5.3. Pre-Trained CNN in Same Application Domain for Feature Extraction and ELM for Fast Learning

We previously discussed deep and transfer learning models that were applied to
feature extraction and fine-tuning with ELM networks. These previously reported transfer
learning models are pre-trained in another application domain. This systematic review also
reports papers that use pre-trained transfer learning architectures in the same application
domain. The objective then is not to decrease the computational cost (when the authors
train the architectures), but rather to increase the proposed final architecture’s accuracy.
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This section discusses two types of application of the approach. Firstly, some studies
have been trained in the ILSVRC database and are used for fine-tuning in the same appli-
cation domain as the ILSVRC. Secondly, some studies fully train architectures (classic or
proprietary) and then immediately use the network to extract features in the same work
for later fine-tuning with ELM. We discuss these two types of application below. Table 12
refers to the transfer learning architectures that were used in this approach.

Table 12. The pre-trained architectures used for fine tuning in the same domain with ELM reported
in the primary studies.

Pre-Trained Architecture References

AlexNet [32,36,37,112]
VGGNet [84,94]
MobileNet [108]
DenseNet [35]
Own architectures [46,49,50,64,65,70,102,103,116]

The authors in [112] propose an approach for image classification based on a hybrid
architecture of the CNN and ELM. The CNN architecture used is AlexNet with pre-trained
weights from the ILSVRC dataset (the same current application domain). The work per-
forms two stages of training: the first training stage consists of re-training the model in the
same work’s database, using the complete AlexNet architecture; the second training stage
consists of the usage of the trained architecture as a feature extractor. The dense layers are
removed, and an ELM network replaces it, performing fine-tuning on the feature vector.
As expected, the training time gains in terms of performance in the test.

The authors in [36,37] propose an approach for object recognition using a hybrid
method, in which the AlexNet architecture is responsible for the training and feature
extraction. Fine-tuning is done with training sets from different proposed datasets. With its
variants, such as adaptive ELM (AELM) and KELM, ELM is used in the data classification
stage. The KELM provides the best accuracy, which is better than the ELM, SVM, and MLP.

The work presented in [32] combines AlexNet and ELM for image classification in
robots’ artificial intelligence. A CNN is used for feature extraction. As a result, the use of
CNN and ELM classifiers shows a faster learning rate and a more accurate classification
rate than other classification methods. The ReLU activation function is used on the ELM
network, obtaining better performance than the existing classification methods.

The work shown in [94] presents an approach for image classification in a scene that
is invariable from the camera’s perspective. The authors use a pre-trained convolutional
neural network (VGG-f) to extract features from different image channels. VGG-f is another
variation of the VGGNet architecture. The authors created the HP-CNN-T, an invariant
descriptor, to further improve performance. The convolutional hypercube pyramid (HP-
CNN) may represent data at various scales. The classification results suggest that the
proposed approach presents a better generalization performance. In [84], the authors
present a multimodal approach for regression. The approach consists of feature extraction
from using the VGG-19 and VGG-face networks. The data were merged and trained with
the KELM network for regression (since a probability-based estimation is made).

In terms of compact deep learning models, the MobileNet model [128] was developed
to be small and adaptable for mobile devices and to use less processing power. Every
standard convolution is factored into a depth-to-depth and point-wise 1 × 1 convolution.
The authors in [108] use the MobileNet model in a multimodal approach; that is, it receives
data from three different types of data for the training process. Thus, the authors perform
the training process on the MobileNet network for each data source. The re-trained
MobileNet networks are used as feature extractors through each network’s last fully
connected layer. Each set of features extracted by the different data sources are trained in
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three different KELM networks. Finally, the results that are generated by each KELM are
combined through an ensemble-based decision rule.

DenseNet [129] is another classic deep learning architecture. Each convolutional layer
of the network receives an additional input from all previous layers and then passes its
feature maps and all subsequent layers. Unlike ResNet, where concatenation is in blocks via
gates, each layer receives information from all previous layers. The work in [35] presents
an approach to image classification using a DenseNet for training and feature extraction
and KELM for fine-tuning. The authors perform the training of the DenseNet deep network
in the proposed dataset. After that, the trained DenseNet is used for feature extraction.
Finally, the approach uses a KELM to train the extracted features.

In contrast to the previous work, other authors proposed a different architecture
instead of using a known network for the transfer learning, such as [46,49,64,102,103,116],
which propose CELM architectures with a different number of convolutional and pooling
layers. The authors used CNN architectures for training the data with the fully connected
layers. After the training, the authors used their trained networks for feature extraction.
They then used the features that were extracted in the ELM network (or its variants) for a
new training process and later for data classification.

The authors in [65] presented the Perceptual Hash-based Convolutional Extreme
Learning Machine (PH-C-ELM) to classify images using a three-stage hybrid. This archi-
tecture uses a convolutional network in the data that were generated by Discrete Wavelet
Transform-Singular Value Decomposition (DWT-SVD) values after the feature extraction
step for data sub-sampling. The authors present a fine-tuning approach, where the pro-
posed CNN is trained in the data, and it is then used as a feature extractor. Finally, an ELM
is trained with the extracted features.

The work shown in [70] presents an approach for image classification in multidimen-
sional sliced images. The authors proposed five different CNN3D architectures (each input
consisted of 20 slices per multidimensional image). The training process is conducted by
fully connected layers (softmax). Each CNN architecture produces different local receptive
fields and, therefore, different features. After the CNN training, the architectures are used
as feature extractors, and then the features are combined for new training in an ELM.

The authors in [50] presented an architecture for image classification that employs
convolution–deconvolution layers and an optimized ELM. Deconvolution layers are used
to enhance deep features in order to overcome the loss of information during convolution.
A full multilayer CNN is developed, which consists of convolution, pooling, deconvolution
layers, ReLU, and backpropagation. Additionally, the PCA algorithm is used to extract the
first principal component as a training tag. The deconvolution layer can generate enlarged
and dense maps, which extract high-level refined resources. The results demonstrate that
the proposed structure surpasses other traditional classifiers and algorithms based on
deep learning. This is the unique result of the systematic review regarding the use of
deconvolution layers.

5.4. Fast Training of CNNs Using ELM Concepts

Unlike the other aspects that have been presented so far, such as a typical CNN for
feature extraction and an ELM for training the extracted data, there are also approaches
that consist of using the complete training of CNNs using ELM concepts. The learning
process is not based on the use of the backpropagation algorithm. ELM concepts are used
to calculate the error and update the filters and weights based on the Moore–Penrose
pseudo-inverse matrix. This ensures fast and efficient training, in addition to offering better
data representation and generalization capabilities. Next, we present the studies that use
ELM concepts for fast training.

The authors in [34] use an approach for the representation of features based on the
PCANet network and ELM autoencoder. The proposed architecture aims to understand
and extract features for the most diverse applications with low computational cost. Three
main stages are implemented to carry out the learning process: (i) the filters and weights
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are obtained with an ELM autoencoder and ELM decoder with convolutional layers; (ii)
a max-pooling operation is used to reduce the dimensionality of the data; and, (iii) post-
processing operations, such as binary hashing and block-wise histogram, are implemented
to combine the features obtained to be used in the final classification step. The authors
suggest that any classifier can be used to learn the obtained features. The error results in
comparison with PCANet show that the proposed model has a lower error rate in all of the
evaluated scenarios, in addition to offering fast training using an ELM neural network.

The work presented in [74] proposes a convolutional neural network model with
training being inspired by an ELM. The convolutional network consists of only two layers,
convolutional and pooling, disregarding the fully connected layers. A convolutional layer
replaces the fully connected layers with a 1 × 1 kernel, similar to the GoogLeNet. The steps
for modeling and training the proposed network are followed by applying convolution
filters in all image regions, forming n × n window matrices. A reshape is applied to each
window, and the filters are learned with an ELM-based approach. This approach provides
a calculation of the Moore–Penrose pseudo-inverse matrix and updates the weights and
biases of the convolutional layers. The authors compare the proposed approach with a
typical CNN with the implemented backpropagation. Although the proposed approach
obtains slightly less accuracy than the baseline, it is worth considering that the training
time is 16 times longer than the baseline, which indicates that it is possible to obtain high
accuracy with little training time.

The authors in [24] propose a new network, named CNN-ELM, for the classification
and detection of objects in images, applying the ELM concept at two levels. The first level
uses ELM for training the convolutional layers. In these layers, random filters are applied
together with the ELM-AE to improve these kernels through autoencoder representation.
In the second level, the extracted features are classified with the multilevel ELM (ML-ELM),
an ELM neural network with multiple layers, following the concepts of deep learning. The
use of this architecture provides fast processing; however, this is at a high memory cost.
Because of this problem, the authors propose using batches (or blocks) of data to be trained
in memory. In comparison with several baseline architectures, the proposed model obtains
the best accuracy and training time.

The work in [130] proposes a new architecture and a training algorithm for convolu-
tional neural networks. The Network in Network (NIN) and ELM architecture combined
with CNN is adopted, with each one’s advantages being explored in the work. This archi-
tecture naturally exploits the efficiency of extracting random and unsupervised resources,
consisting of a deeper network. The image input is converted into localized patches that are
vectorized. They are divided into clusters to pass through the Parts Detector (ELM), where
random weights adjust the hidden layers. They are submitted to ELMConv, where random
convolutional filters with a sigmoid activation function are used, returning unsupervised
convolutional filters. They pass through the ReLU activation function, and an average
grouping, normalization, and final classification are performed with the ELM.

In [110], the authors propose a new approach for performing object tracking using
convolutional networks with a modification in the training model. The proposed CNN
architecture contains two convolutional layers, followed by two layers of poolings, and
there are also the traditional fully connected layers with a softmax activation function. The
authors still use the descending gradient to update the network’s weights and filters with a
modification. An autoencoder ELM is used to learn and update the layer weights between
the first pooling layer and the second convolutional layer. This provides a reduction in
training time and, consequently, a gain in performance.
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The work presented in [30] proposes a new architecture, named ELMAENet, for image
classification. The proposed architecture includes three layers: (i) a convolutional layer
with filter learning through ELM-AE; (ii) a non-linear processing layer, where the values
are binary with hashing and a histogram; and, (iii) a pooling layer. The learning of these
features is performed by the ELM-AE structure. The architecture is evaluated using several
datasets and compared with several models, achieving the best computational performance
of the studied methods.

The authors in [131] propose an approach for image classification using the CNN
and ELM. The work’s main contribution is a new method for extracting features, where
convolutional layers are used with learning filters without the need for the backpropagation
algorithm. The authors use ELM-AE to learn the best features in the convolutional layers.
An ELM ensemble is used for the data classification. The proposed architecture is evaluated
using different datasets and, in three of them, it obtains the best results in terms of accuracy.

The work [132] presents a new approach to train CNNs using ELM and applies it for
image recognition. The architecture consists of three convolutional and two pooling layers.
There are ELM networks between the two pooling layers and the subsequent convolution
layers. There is also an ELM network to carry out the recognition stage of the tracks.
The error is propagated from the last ELM network near the target (labeled image) in
the opposite direction of the network until the first convolution layer is reached. From
that, convolution weights, filters, and other parameters are adjusted with the intermediate
ELM networks, which provides faster adjustment and learning. The proposed approach is
superior to others in the literature in terms of accuracy and computational performance.

6. Main Findings in CELM

Based on the scenarios and the most common datasets used in the primary studies, in
this subsection we describe the main findings when applying the CELM to image analysis.

Next, we present the accuracy results of the CELM models using the primary databases
that are presented in Section 4. We also present the time that is required for training and
testing the CELM models. It is worth mentioning that the presentation of these time results
shows that CELM models are trained and tested in less time than classic machine learning
models, and it is important not to compare them against each other, as each model was
trained and tested in different machines with different setups.

The authors in [6,24–30] applied CELM to solve the object recognition problem using
the NORB dataset. In general, all studies presented a good accuracy, with all of them
achieving over 94%, as shown in Table 13. All of these studies performed comparisons
against algorithms, such as the classic CNN, MLP, and SVM, and the CELM models
outperformed all of the studied approaches.

The best accuracy results were 98.53%, and 98.28%, which were achieved by [28] using
an ELM-LRF with autoencoding receptive fields (ELM-ARF) and [30] using the ELMAENet,
respectively. This demonstrates the excellent representativeness of the extracted features
and generalization capability of ELM models.

In general, we noted that some of the studies only presented the training time in the
papers for the NORB dataset in their experiments. For this reason, in Table 13, we do not
consider testing time in the discussion. The best training time was achieved by [27] (216 s),
and this result was probably due to the compact autoencoding features by ELM-AE. The
worst result was achieved by [29] (4401.07 s). The difference may probably be due to the
different machine and scenario setup, as previously discussed. In general, ELM-LRF-based
architectures provide a low training time due to the simplicity of the architectures. All of
these architectures presented better training results than classic machine learning models.
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Table 13. The results obtained by CELM architectures for object recognition in the NORB dataset.

Reference Approach Accuracy Training Time (s)

Huang et al. (2014) [6] ELM-LRF 97.26 394.16
Bai et al. (2015) [25] ELM-LRF 97.24 400.78
Yoo and Oh (2016) [24] CNN-AE-ML-ELM 94.92 1165.87
He et al. (2019) [26] ELM-HLRF 97.45 516.08
Wu et al. (2020) [27] ELM-ARF 98.00 216
Wu et al. (2020) [28] ELM-MAERF 98.53 279
Song et al. (2020) [29] R2ELM-LRF 97.61 4401.07
Chang et al. (2020) [30] ELMAENet 98.28 -

The authors in [46–51,54] used the Pavia dataset for remote sensing classification. Note
that remote sensing approaches use other evaluation metrics, such as average accuracy
(AA), overall accuracy (OA), and Kappa, as shown in Table 14.

The most common approach used for this purpose is a CNN that was previously
pre-trained in the Pavia dataset used for feature extraction and an ELM for the classification
task [46,49,50]. However, the ELM-HLRF thatwas proposed in [51] achieved the best AA
and OA results, at 98.25% and 98.36%, respectively.

Most of the studies did not report any results regarding the training or testing time,
but we show the effectiveness in these metrics for remote sensing classification. The work
in [46] reported a low training time of 14.10 s, and the work in [47] achieved 0.79 s of
testing time.

Table 14. Results obtained by CELM architectures for remote sensing classification in the Pavia dataset.

Reference Approach AA OA Kappa Training Time (s) Testing Time (s)

Lv et al. (2016) [51] ELM-HLRF 98.25 98.36 0.981 44.12 -
Shi and Ku (2017) [48] CNN(gabor)-ELM 94.3 92.8 0.940 - -
Shen et al. (2017) [54] ELM-LRF 97.95 98.29 0.981 - -
Li et al. (2018) [50] CNN(pre-trained)-ELM - 96.70 0.955 - -
Cao et al. (2018) [49] CNN(pre-trained)-ELM 97.50 98.85 0.983 - -
Huang et al. (2019) [46] CNN(pre-trained)-ELM 85.50 87.77 0.860 14.10 25.24
Shen et al. (2019) [47] CNN(random)-ELM - 97.42 0.971 49.00 0.79

Table 15 presents the accuracy results using the MNIST dataset for handwritten digit
recognition being performed by [24,27–30,34,74–77]. All of the studies presented a high
accuracy of over 96%. The training time varied considerably, ranging from 8.22 s [76]
to 2658.36 s [29]. Regarding the testing time, the work that was performed in [76] also
presented the best performance (0.89 s).

Different neural network implementations can make a difference in processing time,
which can explain the difference in the work that was performed in [76] to others. Besides
having the best training and testing time, the work presented in [76] achieved the worst
accuracy for the handwritten digit classification task (96.80%).

We highlight the work presented in [30], which outperformed other accuracy metric
models (99.46%) using the ELMAENet. The results showed that feature representation in
ELM-LRF and the CNN with ELM-AE was sufficient for reaching a good accuracy result.
In the learning task, the accuracy was superior to 99% in both cases. The results obtained by
the studies demonstrate that the CELM approaches have good generalization performance
in this benchmark dataset.
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Table 15. Results obtained by CELM architectures for handwritten digit recognition in the MNIST dataset.

Reference Approach Accuracy Training Time (s) Testing Time (s)

Yoo and Oh (2016) [24] CNN-ML-ELM-AE 99.35 1113.09 -
Pang and Yang (2016) [77] ELM-HLRF 98.43 27.8 -
Cui et al. (2017) [34] PCANet-ELM-AE 99.02 - -
Ding et al. (2017) [76] CNN(random)-ELM 96.80 8.22 0.89
Khellal et al. (2018) [74] ELM-CNN 99.16 157.08 -
Kannojia and Jaiswal (2018) [75] CNN(random)-ELM 99.33 - -
Song et al. (2020) [29] R2ELM-LRF 99.21 2658.36 -
Chang et al. (2020) [30] ELMAENet 99.46 - -
Wu et al. (2020) [27] ELM-ARF 98.95 265 22
Wu et al. (2020) [28] ELM-MAERF 99.43 204 14.8

Table 16 shows the results that were related to the YALE dataset for face recognition
obtained by the studies [26,28,81]. All of the studies reported an accuracy that was superior
to 95%. The best accuracy result was found by [81] (98.67%), and the worst was achieved
by [26] (95.56%).

The accuracy result that was obtained by [81] (PCA convolution filters) and [28]
(multiple autoencoding ELM-LRF) demonstrate that the use of multiple random or Gabor
filters was not sufficient for providing good representativeness of the data for training in
an ELM using the YALE dataset. The studies [28,81] have more robust architectures, which
can explain the better accuracy result.

Only the work [28] presented training and testing times, at 16 and 0.38 s, respectively.
The literature suggests that CELM approaches can also reach good accuracy results in the
face recognition problem. On the other hand, the training and testing time was not clear
due to the missing reported results.

Table 16. The results obtained by CELM architectures for face recognition in YALE dataset.

Reference Approach Accuracy Training Time (s) Testing Time (s)

Yu and Wu (2018) [81] 2DPCANet-ELM 98.87 - -
He et al. (2019) [26] ELM-HKLRF 95.56 - -
Wu et al. (2020) [28] ELM-MAERF 98.67 16 0.38

Table 17 shows the results when solving RGB-D image recognition using the Washing-
ton RGB-D Object dataset in the studies [90–94]. RGB-D image recognition is a task that
considers two types of data, such as the RGB color channel and the depth, which makes the
classification task more difficult. The accuracy results varied from 70.08% (single ELM-LRF)
to 91.10% (VGGNet-ELM). One can note improvements when the RGB and D channels
are separately processed in random filter representations [91–93]. There is no significant
difference in the results that were reached in feature extraction by random convolutional
architectures (up to 90.80% [92]) and pre-trained architectures (91.10% [94]). Besides the
high complexity for RGB-D classification, the CELM architectures reached good accuracy.
Besides providing a low accuracy, the work presented in [90] achieved the best training
time due to its network complexity (192.51 s).
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Table 17. The results obtained by CELM architectures for RGB-D classification in Washington RGB-D
Object dataset.

Reference Approach Accuracy Training Time (s) Testing Time (s)

Boubou et al. (2017) [90] ELM-LRF 70.08 193.51 0.645
Liu et al. (2018) [91] MMELM-LRF 89.30 715.66 -
Yin and Li (2018) [93] JDRKC-ELM 90.80 615.32 -
Yin and Li (2019) [92] CSPMPR-ELM 90.80 - -
Zaki et al. (2019) [94] VGGNet-ELM 91.10 - -

In general, one can note that the CELM models provide satisfactory results in terms of
accuracy and computational performance (training time and testing).

CNN-based approaches with predefined kernels for feature extraction provide good
results in terms of accuracy and training time. In two scenarios (object and face recognition),
the architectures of this type presented better accuracy [27,81] than other approaches, such
as the deep belief network and stacked autoencoders. The excellent performance of this
approach in the computational aspect is due to its one-way training style. The feature
extraction is the most costly stage due to the high number of matrix operations in the CNN.
However, when it comes to the training stage using ELM, the processing time is not an
aggravating factor, except when the architectures’ complexity is increased.

Regarding the approaches that use pre-trained CNN architectures (in the same or
other domain) to extract characteristics and perform later fine-tuning with am ELM, it
is also observed that the results are satisfactory. This approach outperforms others in
the remote sensing and RGB-D image recognition scenarios [49,94] when considering the
accuracy metric. Classic CNNs and support vector machines are examples of outperformed
approaches. This approach’s training method is also a one-way training style, which
explains the excellent training time involved in the learning process.

The fast training approaches for CNN models using ELM concepts could not be further
analyzed, because only a few studies were found in the literature. However, one can note
that this approach outperforms other CELM models, such as ELM-LRF and PCANet-ELM,
in terms of accuracy when considering the handwritten digit recognition problem [30].
Instead of using the backpropagation algorithm for feature training, the authors used the
ELM-AE network, obtaining a more compact representation of data and better training
time.

In general, CELM presented interesting results regarding the accuracy as compared to
several proposals that were found in the literature. Despite not having the same power
as the conventional CNNs (with fully connected layers and backpropagation) to extract
features, the CELM’s accuracy proved competitive in the analyzed scenarios and bench-
mark datasets. The competitiveness of the results is clear when, in many cases, CELM
was superior to several traditional models, such as MLP (as in [50,69,102]) and SVM (as
in [46,90,113]). Observing these results, we reported a good generalization and good
representativeness for the CELM [27,49,55,57,68,97,104].

From the primary studies, we also notice that CELM architectures have good conver-
gence and provide better accuracy. Changing the fully connected layers to an ELM network
consequently increases the training speed and avoids fine adjustments [30,115,122,131].
Convergence is achieved without iterations and intensive updating of the network parame-
ters. In the case of a CNN for feature extraction with an ELM, the training is done with the
ELM after the extraction of CNN features. Rapid training reflects directly on computational
performance. With the adoption of the CELM, it is possible to decrease the processing
time that is required for the learning process. This feature makes the CELM able to solve
problems on a large scale, such as real-time or big data applications [29,94,111].
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7. Open Challenges

Despite the many advantages of the CELM architectures, such as suitable training
time, test time, and accuracy, some open challenges can serve as inspiration for future
research contributing to the advancement in the field of research into the CELM.

It is known that the number of layers can be an important factor in the ability to
generalize a neural network. Classic studies of deep learning proposed architectures with
multiple convolution layers [18,19,129]. However, when the number of layers is increased,
problems with increasing training time and a loss of generalization capacity emerge [77],
which can cause overfitting issues. These two reasons may explain the reason that many
CELM architectures with predefined kernels do not use very complex architectures to
extract features.

Despite the good performance of GPUs, sometimes it is not possible to use them in a
real environment. When this happens, all of the data are stored sequentially in the RAM
and processed by the CPU, increasing the training time, especially when handling data
with high dimensionality. One possible way to overcome this issue is using approaches
that aim at high-performance computing using parallel computing. Furthermore, the
usage of strategies for batching the features can replace the number of samples N in the
memory requirements [9]. There is an approach in the literature that aims to use an ELM for
large-scale data problems, known as the high-performance extreme learning machine [9],
which could be adequately analyzed in the context of the CELM.

Regarding the problem of the number of convolutional layers, the gradual increase
in the complexity of the network can cause problems in the model generalization. This
can decrease the accuracy and cause overfitting. Some studies in the literature have
proposed using new structures that increase the number of layers without a loss in the
generalization of the network and improve the accuracy results, such as residual blocks [19]
and dense blocks [129]. This is another research challenge that can be considered in CELM
architectures, increasing the number of layers to increase the accuracy without losing the
network’s generalization capacity. These deep convolutional approaches should inspire
CNN architectures for the CELM.

There is also a research field that aims to make deep learning models more compact,
which would accelerate the learning process. Traditional CNN models generally demand
high computational cost and, by compressing these models, it is possible to make them
lighter in terms of their computational cost. Two well-known techniques used for CNN
compression are pruning and weight quantization. The pruning process handles the
removal of a subset of parameters (filters, layers, or weights) evaluated as less critical for
the task. None of the studies reported in this systematic review reported the use of pruning
or weight quantization. Approaches for pruning or weight quantization (or a combination
of both) could improve the learning process of CELMs, removing irrelevant information in
the neural network and optimizing the support for real-time applications.

In this systematic review, we did not report any work on object detection problems.
Deep learning research field architectures for object detection, such as R-CNN, Mask
R-CNN, and YOLO, could inspire new CELM studies. Such architectures have high
computational costs. When the object detection deep learning models are processed into
the CPU, there is a loss in computational performance. Developing new architectures for
object detection using ELM concepts could help such applications where computational
resources are limited.

Another common computer vision problem that recurs in the literature and it is little
addressed in this systematic review is semantic segmentation. The difficulty may be linked
to image reconstruction and decoding operations through deconvolutions usually done
through the backpropagation algorithm. This is another open challenge in the CELM,
where ELM networks could replace the backpropagation in the calculation to update the
weights of both convolutional and deconvolutional layers for the reconstruction of the
segmented images.
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Despite presenting promising and interesting results in RGB-D classification and
remote sensing tasks, there is a lack of CELM networks in this area. There are no studies
to date that prove the strength of the CELM in very large datasets for even more complex
tasks. Therefore, there is a need for a performance evaluation (accuracy and computation)
of CELM models on the large current state of the art, such as ImageNet, the COCO dataset,
and Pascal-VOC. These last three cited databases are current references in deep learning
for image classification, object detection, and semantic segmentation, in addition to other
problems, such as the detection of human poses and panoptic segmentation, and so on.
The performing of new experiments on the state of the art datasets in deep learning can
strengthen all aspects of the CELM’s advantages that are covered in this systematic review.

8. Conclusions

CELMs are quick-training CNNs that avoid the use of backpropagation calculations
for updating the network weights. Filters are efficiently defined for the feature extraction
step, and least-squares obtain weights in the classification stage’s output layer through an
ELM network.

We presented a systematic review on the CELM in image analysis while considering
the literature published over the last 10 years. Initially, we collected 2220 articles, and after
removing duplicate and applying inclusion criteria, we analyzed 81 studies on the CELM.
We reported 19 different scenarios, and object recognition was the most common application
where the CELM was used. Additionally, we have found and classified the studies into
four different types of CELM architectures: (i) a CNN with predefined kernels for feature
extraction and an ELM for fast training; (ii) a pre-trained CNN in other application domains
for feature extraction and an ELM for fast training; (iii) a pre-trained CNN in the same
application domain for feature extraction and an ELM for fast training; and, (iv) the fast
training of CNNs using ELM concepts. The CNN with predefined kernels was the most
common architecture that was proposed in the literature, followed by the pre-trained CNN
in same application domain.

Analyzing the primary studies, we can state that CELM models provide good accuracy
and good computational performance. We highlight the excellent feature representation
that is achieved by the CELM, which can explain its good accuracy results. In general, the
CELM architectures present fast convergence by changing the conventional fully connected
layers to the ELM network. This change avoids fine adjustments by the backpropagation
algorithm’s iterations. Finally, there is a decrease in the total processing time that is required
for the learning process when using CELM architectures, making it suitable to solve image
analysis problems in real-time applications.

As limitations of this work, we could initially cite the range of the systematic review;
it was focused on the last 10 years of the literature, but, as presented, the first papers
regarding the CELM were published in 2015, and most of them after 2018. Moreover, as
time passes and the CELM becomes a more active research area, other new studies are
constantly being published, and keeping the systematic review up-to-date is a difficult
task.

In terms of future research that is based on the findings and open challenges of this
systematic review, we highlight the following directions: (i) strategies to increase the
number of convolutional layers without negative impacts on overfitting, training time, and
generalization issues; (ii) optimized implementations of the ELM for high-performance
computing in the context of the CELM can address the training time issue; (iii) pruning,
compaction, and/or quantization techniques for convolution layers may accelerate the
learning process; (iv) the implementation of new CELM architectures inspired by traditional
deep learning architectures—e.g., R-CNN, Mask R-CNN, and YOLO—for object detection
and image segmentation; and, (v) regarding the reconstruction of segmented images, it
would be possible to investigate the use of ELM networks to replace backpropagation in
the calculation of the updates of the weights of the deconvolutional/upsampling layers.
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