Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Jordan Chapman

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2063 KiB  
Article
Insights into the Relative Abundance, Life History, and Ecology of Oceanic Sharks in the Eastern Bahamas
by Brendan S. Talwar, Edward J. Brooks, Debra L. Abercrombie, Brenda Anderson, Mark E. Bond, Annabelle M. L. Brooks, Demian D. Chapman, Gina M. Clementi, Candace Y. A. Fields, Jim Gelsleichter, R. Dean Grubbs, Lucy A. Howey, Lance K. B. Jordan, Jeremy J. Kiszka, Ryan J. Knotek, Yannis P. Papastamatiou, Cheston T. Peterson, Eric V. C. Schneider, Oliver N. Shipley, Sean Williams, Maggie M. Winchester and Michael R. Heithausadd Show full author list remove Hide full author list
Sustainability 2024, 16(1), 200; https://doi.org/10.3390/su16010200 - 25 Dec 2023
Cited by 1 | Viewed by 2816
Abstract
Fisheries-independent data on the diversity, relative abundance, and demographic structure of poorly studied, threatened oceanic sharks are absent from much of the western North Atlantic Ocean, where multiple oceanic shark species have experienced significant population declines. Resource-limited management approaches require the identification of [...] Read more.
Fisheries-independent data on the diversity, relative abundance, and demographic structure of poorly studied, threatened oceanic sharks are absent from much of the western North Atlantic Ocean, where multiple oceanic shark species have experienced significant population declines. Resource-limited management approaches require the identification of critical habitats or aggregation sites worthy of protection and enforcement. Data were collected on oceanic sharks using pelagic longline surveys, targeted baiting, and opportunistic encounters in oligotrophic open-ocean habitats of north-eastern Exuma Sound (NES), The Bahamas. The oceanic epipelagic shark community was also characterized using targeted baiting off Columbus Point, Cat Island (CI), a seamount north of San Salvador (SSSM), and the northwestern tip of Mayaguana. Pelagic longline surveys suggested that the relative abundance of sharks at NES was low (shark catch-per-unit-effort: 0.0007 sharks hook−1 h−1; 2.3 sharks per 1000 hooks). Silky sharks Carcharhinus falciformis, particularly juveniles (134 ± 39 cm stretched total length; mean ± SD STL), were the most common. Targeted baiting suggested oceanic whitetip sharks C. longimanus were abundant at CI, where large adults (245 ± 23 cm STL), most of which were females (83.8%, n = 98 of 117) that were gravid (65.7%; n = 46 of 70 assessed for pregnancy), dominated the aggregation. Many (20.5–26.5%, n = 24–31 of 117 depending on assumptions regarding tag loss) were recaptured or resighted at CI for up to five years. Silky sharks dominated catches at SSSM. Oceanic sharks, particularly adults, were sometimes caught or observed alongside short-finned pilot whales Globicephala macrorhynchus or tunas. Although The Bahamas offers threatened oceanic sharks refuge from fishing across its entire jurisdiction, these data suggest that some fixed features, including sites such as CI and potentially SSSM, are important aggregation sites with high regional conservation value and should be prioritized by fisheries managers and enforcement officials. Full article
(This article belongs to the Special Issue Aquatic Biodiversity and Marine Ecosystem Sustainability)
Show Figures

Figure 1

16 pages, 2515 KiB  
Review
Building More Resilient Culture Collections: A Call for Increased Deposits of Plant-Associated Bacteria
by Kirk Broders, Andrew Aspin, Jordan Bailey, Toni Chapman, Perrine Portier and Bevan S. Weir
Microorganisms 2022, 10(4), 741; https://doi.org/10.3390/microorganisms10040741 - 30 Mar 2022
Cited by 5 | Viewed by 3512
Abstract
Biological collections preserve our past, while helping protect our future and increase future knowledge. Plant bacterial culture collections are our security for domestic and global biosecurity. This feature article will provide an introduction to the global position of plant bacterial collections. The role [...] Read more.
Biological collections preserve our past, while helping protect our future and increase future knowledge. Plant bacterial culture collections are our security for domestic and global biosecurity. This feature article will provide an introduction to the global position of plant bacterial collections. The role of collections in monitoring plant pathogenic bacteria will be explored through the presentation of five cases studies. These case studies demonstrate why culture collections were imperative for the outcome in each situation. We discuss what we believe should be the best practices to improve microbial preservation and accessioning rates, and why plant bacterial culture collections must increase deposits to be prepared for future emerging pathogens. This is not only the case for global culture collections, but on a much bigger scale, our future scientific successes, our biosecurity decisions and responses, and our knowledge are contingent upon preserving our valuable bacterial strains. It is hoped that once you read this article, you will see the need to deposit your strains in registered public collections and make a concerted effort to build better bacterial culture collections with us. Full article
(This article belongs to the Special Issue Molecular Analysis of Plant Pathogenic Bacteria)
Show Figures

Figure 1

21 pages, 3845 KiB  
Review
Hyaluronic Acid Allows Enzyme Immobilization for Applications in Biomedicine
by Jackie Arnold, Jordan Chapman, Myra Arnold and Cerasela Zoica Dinu
Biosensors 2022, 12(1), 28; https://doi.org/10.3390/bios12010028 - 7 Jan 2022
Cited by 9 | Viewed by 4834
Abstract
Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as [...] Read more.
Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as for detergent, textile, and food production and preservation industries respectively. Challenges regarding the transposition of enzymes from their natural purpose and environment into synthetic practice are discussed. For example, temperature and pH-induced enzyme fragilities, short shelf life, low-cost efficiency, poor user-controllability, and subsequently insufficient catalytic activity were shown to decrease pertinence and profitability in large-scale production considerations. Enzyme immobilization was shown to improve and expand upon enzyme usage within a profit and impact-oriented commercial world and through enzyme-material and interfaces integration. With particular focus on the growing biomedical market, examples of enzyme immobilization within or onto hyaluronic acid (HA)-based complexes are discussed as a definable way to improve upon and/or make possible the next generation of medical undertakings. As a polysaccharide formed in every living organism, HA has proven beneficial in biomedicine for its high biocompatibility and controllable biodegradability, viscoelasticity, and hydrophilicity. Complexes developed with this molecule have been utilized to selectively deliver drugs to a desired location and at a desired rate, improve the efficiency of tissue regeneration, and serve as a viable platform for biologically accepted sensors. In similar realms of enzyme immobilization, HA’s ease in crosslinking allows the molecule to user-controllably enhance the design of a given platform in terms of both chemical and physical characteristics to thus best support successful and sustained enzyme usage. Such examples do not only demonstrate the potential of enzyme-based applications but further, emphasize future market trends and accountability. Full article
(This article belongs to the Special Issue Bio–Nano-Interfaces for Engineering and Biomedical Applications)
Show Figures

Figure 1

26 pages, 2705 KiB  
Review
Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks
by Jordan Chapman, Ahmed E. Ismail and Cerasela Zoica Dinu
Catalysts 2018, 8(6), 238; https://doi.org/10.3390/catal8060238 - 5 Jun 2018
Cited by 622 | Viewed by 63878
Abstract
Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are [...] Read more.
Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user. Full article
(This article belongs to the Special Issue Immobilized Biocatalysts)
Show Figures

Figure 1

11 pages, 6757 KiB  
Article
MALDI-MS Imaging of Urushiols in Poison Ivy Stem
by Mina Aziz, Drew Sturtevant, Jordan Winston, Eva Collakova, John G. Jelesko and Kent D. Chapman
Molecules 2017, 22(5), 711; https://doi.org/10.3390/molecules22050711 - 29 Apr 2017
Cited by 23 | Viewed by 7936
Abstract
Urushiols are the allergenic components of Toxicodendron radicans (poison ivy) as well as other Toxicodendron species. They are alk-(en)-yl catechol derivatives with a 15- or 17-carbon side chain having different degrees of unsaturation. Although several methods have been developed for analysis of urushiols [...] Read more.
Urushiols are the allergenic components of Toxicodendron radicans (poison ivy) as well as other Toxicodendron species. They are alk-(en)-yl catechol derivatives with a 15- or 17-carbon side chain having different degrees of unsaturation. Although several methods have been developed for analysis of urushiols in plant tissues, the in situ localization of the different urushiol congeners has not been reported. Here, we report on the first analysis of urushiols in poison ivy stems by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). Our results show that the urushiol congeners with 15-carbon side chains are mainly localized to the resin ducts, while those with 17-carbon side chains are widely distributed in cortex and vascular tissues. The presence of these urushiols in stem extracts of poison ivy seedlings was confirmed by GC-MS. These novel findings provide new insights into the spatial tissue distribution of urushiols that might be biosynthetically or functionally relevant. Full article
Show Figures

Figure 1

Back to TopTop