Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Jean-Claude Martinou

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7751 KiB  
Article
Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues
by Stéphanie Solier, Michele Mondini, Lydia Meziani, Arnaud Jacquel, Catherine Lacout, Tom Vanden Berghe, Yvon Julé, Jean-Claude Martinou, Gérard Pierron, Julie Rivière, Marc Deloger, Corinne Dupuy, Anny Slama-Schwok, Nathalie Droin, Peter Vandenabeele, Patrick Auberger, Eric Deutsch, Jamel El-Benna, Pham My-Chan Dang and Eric Solary
Int. J. Mol. Sci. 2023, 24(4), 4151; https://doi.org/10.3390/ijms24044151 - 19 Feb 2023
Cited by 2 | Viewed by 2733
Abstract
Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria [...] Read more.
Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues. Full article
(This article belongs to the Special Issue Cellular Crosstalk in the Tumor Microenvironment)
Show Figures

Figure 1

19 pages, 1861 KiB  
Review
RNA Granules in the Mitochondria and Their Organization under Mitochondrial Stresses
by Vanessa Joanne Xavier and Jean-Claude Martinou
Int. J. Mol. Sci. 2021, 22(17), 9502; https://doi.org/10.3390/ijms22179502 - 1 Sep 2021
Cited by 34 | Viewed by 10343
Abstract
The human mitochondrial genome (mtDNA) regulates its transcription products in specialised and distinct ways as compared to nuclear transcription. Thanks to its mtDNA mitochondria possess their own set of tRNAs, rRNAs and mRNAs that encode a subset of the protein subunits of the [...] Read more.
The human mitochondrial genome (mtDNA) regulates its transcription products in specialised and distinct ways as compared to nuclear transcription. Thanks to its mtDNA mitochondria possess their own set of tRNAs, rRNAs and mRNAs that encode a subset of the protein subunits of the electron transport chain complexes. The RNA regulation within mitochondria is organised within specialised, membraneless, compartments of RNA-protein complexes, called the Mitochondrial RNA Granules (MRGs). MRGs were first identified to contain nascent mRNA, complexed with many proteins involved in RNA processing and maturation and ribosome assembly. Most recently, double-stranded RNA (dsRNA) species, a hybrid of the two complementary mRNA strands, were found to form granules in the matrix of mitochondria. These RNA granules are therefore components of the mitochondrial post-transcriptional pathway and as such play an essential role in mitochondrial gene expression. Mitochondrial dysfunctions in the form of, for example, RNA processing or RNA quality control defects, or inhibition of mitochondrial fission, can cause the loss or the aberrant accumulation of these RNA granules. These findings underline the important link between mitochondrial maintenance and the efficient expression of its genome. Full article
(This article belongs to the Special Issue Molecular Research on Mitochondrial Dysfunction)
Show Figures

Figure 1

18 pages, 991 KiB  
Review
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier
by Joséphine Zangari, Francesco Petrelli, Benoît Maillot and Jean-Claude Martinou
Biomolecules 2020, 10(7), 1068; https://doi.org/10.3390/biom10071068 - 17 Jul 2020
Cited by 98 | Viewed by 27149
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the [...] Read more.
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

Back to TopTop