Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Ivan Volosyak ORCID = 0000-0001-6555-7617

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1921 KiB  
Article
Streamlining cVEP Paradigms: Effects of a Minimized Electrode Montage on Brain–Computer Interface Performance
by Milán András Fodor, Atilla Cantürk, Gernot Heisenberg and Ivan Volosyak
Brain Sci. 2025, 15(6), 549; https://doi.org/10.3390/brainsci15060549 - 23 May 2025
Viewed by 512
Abstract
(1) Background: Brain–computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals, offering potential applications in assistive technology and neurorehabilitation. Code-modulated visual evoked potential (cVEP)-based BCIs employ code-pattern-based stimulation to evoke neural responses, which can then be [...] Read more.
(1) Background: Brain–computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals, offering potential applications in assistive technology and neurorehabilitation. Code-modulated visual evoked potential (cVEP)-based BCIs employ code-pattern-based stimulation to evoke neural responses, which can then be classified to infer user intent. While increasing the number of EEG electrodes across the visual cortex enhances classification accuracy, it simultaneously reduces user comfort and increases setup complexity, duration, and hardware costs. (2) Methods: This online BCI study, involving thirty-eight able-bodied participants, investigated how reducing the electrode count from 16 to 6 affected performance. Three experimental conditions were tested: a baseline 16-electrode configuration, a reduced 6-electrode setup without retraining, and a reduced 6-electrode setup with retraining. (3) Results: Our results indicate that, on average, performance declines with fewer electrodes; nonetheless, retraining restored near-baseline mean Information Transfer Rate (ITR) and accuracy for those participants for whom the system remained functional. The results reveal that for a substantial number of participants, the classification pipeline fails after electrode removal, highlighting individual differences in the cVEP response characteristics or inherent limitations of the classification approach. (4) Conclusions: Ultimately, this suggests that minimal cVEP-BCI electrode setups capable of reliably functioning across all users might only be feasible through other, more flexible classification methods that can account for individual differences. These findings aim to serve as a guideline for what is currently achievable with this common cVEP paradigm and to highlight where future research should focus in order to move closer to a practical and user-friendly system. Full article
Show Figures

Figure 1

16 pages, 664 KiB  
Article
Evaluation of Different Visual Feedback Methods for Brain—Computer Interfaces (BCI) Based on Code-Modulated Visual Evoked Potentials (cVEP)
by Milán András Fodor, Hannah Herschel, Atilla Cantürk, Gernot Heisenberg and Ivan Volosyak
Brain Sci. 2024, 14(8), 846; https://doi.org/10.3390/brainsci14080846 - 22 Aug 2024
Cited by 2 | Viewed by 1624
Abstract
Brain–computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals. BCIs based on code-modulated visual evoked potentials (cVEPs) are based on visual stimuli, thus appropriate visual feedback on the interface is crucial for an effective BCI system. [...] Read more.
Brain–computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals. BCIs based on code-modulated visual evoked potentials (cVEPs) are based on visual stimuli, thus appropriate visual feedback on the interface is crucial for an effective BCI system. Many previous studies have demonstrated that implementing visual feedback can improve information transfer rate (ITR) and reduce fatigue. This research compares a dynamic interface, where target boxes change their sizes based on detection certainty, with a threshold bar interface in a three-step cVEP speller. In this study, we found that both interfaces perform well, with slight variations in accuracy, ITR, and output characters per minute (OCM). Notably, some participants showed significant performance improvements with the dynamic interface and found it less distracting compared to the threshold bars. These results suggest that while average performance metrics are similar, the dynamic interface can provide significant benefits for certain users. This study underscores the potential for personalized interface choices to enhance BCI user experience and performance. By improving user friendliness, performance, and reducing distraction, dynamic visual feedback could optimize BCI technology for a broader range of users. Full article
Show Figures

Figure 1

13 pages, 655 KiB  
Article
cVEP Training Data Validation—Towards Optimal Training Set Composition from Multi-Day Data
by Piotr Stawicki and Ivan Volosyak
Brain Sci. 2022, 12(2), 234; https://doi.org/10.3390/brainsci12020234 - 8 Feb 2022
Cited by 9 | Viewed by 2385
Abstract
This paper investigates the effects of the repetitive block-wise training process on the classification accuracy for a code-modulated visual evoked potentials (cVEP)-based brain–computer interface (BCI). The cVEP-based BCIs are popular thanks to their autocorrelation feature. The cVEP-based stimuli are generated by a specific [...] Read more.
This paper investigates the effects of the repetitive block-wise training process on the classification accuracy for a code-modulated visual evoked potentials (cVEP)-based brain–computer interface (BCI). The cVEP-based BCIs are popular thanks to their autocorrelation feature. The cVEP-based stimuli are generated by a specific code pattern, usually the m-sequence, which is phase-shifted between the individual targets. Typically, the cVEP classification requires a subject-specific template (individually created from the user’s own pre-recorded EEG responses to the same stimulus target), which is compared to the incoming electroencephalography (EEG) data, using the correlation algorithms. The amount of the collected user training data determines the accuracy of the system. In this offline study, previously recorded EEG data collected during an online experiment with 10 participants from multiple sessions were used. A template matching target identification, with similar models as the task-related component analysis (TRCA), was used for target classification. The spatial filter was generated by the canonical correlation analysis (CCA). When comparing the training models from one session with the same session’s data (intra-session) and the model from one session with the data from the other session (inter-session), the accuracies were (94.84%, 94.53%) and (76.67%, 77.34%) for intra-sessions and inter-sessions, respectively. In order to investigate the most reliable configuration for accurate classification, the training data blocks from different sessions (days) were compared interchangeably. In the best training set composition, the participants achieved an average accuracy of 82.66% for models based only on two training blocks from two different sessions. Similarly, at least five blocks were necessary for the average accuracy to exceed 90%. The presented method can further improve cVEP-based BCI performance by reusing previously recorded training data. Full article
Show Figures

Figure 1

16 pages, 906 KiB  
Article
Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces
by Piotr Stawicki and Ivan Volosyak
Brain Sci. 2020, 10(10), 686; https://doi.org/10.3390/brainsci10100686 - 28 Sep 2020
Cited by 14 | Viewed by 3337
Abstract
Motion-based visual evoked potentials (mVEP) is a new emerging trend in the field of steady-state visual evoked potentials (SSVEP)-based brain–computer interfaces (BCI). In this paper, we introduce different movement-based stimulus patterns (steady-state motion visual evoked potentials—SSMVEP), without employing the typical flickering. The tested [...] Read more.
Motion-based visual evoked potentials (mVEP) is a new emerging trend in the field of steady-state visual evoked potentials (SSVEP)-based brain–computer interfaces (BCI). In this paper, we introduce different movement-based stimulus patterns (steady-state motion visual evoked potentials—SSMVEP), without employing the typical flickering. The tested movement patterns for the visual stimuli included a pendulum-like movement, a flipping illusion, a checkerboard pulsation, checkerboard inverse arc pulsations, and reverse arc rotations, all with a spelling task consisting of 18 trials. In an online experiment with nine participants, the movement-based BCI systems were evaluated with an online four-target BCI-speller, in which each letter may be selected in three steps (three trials). For classification, the minimum energy combination and a filter bank approach were used. The following frequencies were utilized: 7.06 Hz, 7.50 Hz, 8.00 Hz, and 8.57 Hz, reaching an average accuracy between 97.22% and 100% and an average information transfer rate (ITR) between 15.42 bits/min and 33.92 bits/min. All participants successfully used the SSMVEP-based speller with all types of stimulation pattern. The most successful SSMVEP stimulus was the SSMVEP1 (pendulum-like movement), with the average results reaching 100% accuracy and 33.92 bits/min for the ITR. Full article
(This article belongs to the Special Issue Collection on Neural Engineering)
Show Figures

Figure 1

13 pages, 5477 KiB  
Article
Comparison of Different Visual Feedback Methods for SSVEP-Based BCIs
by Mihaly Benda and Ivan Volosyak
Brain Sci. 2020, 10(4), 240; https://doi.org/10.3390/brainsci10040240 - 18 Apr 2020
Cited by 8 | Viewed by 3692
Abstract
In this paper we compared different visual feedback methods, informing users about classification progress in a steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) speller application. According to results from our previous studies, changes in stimulus size and contrast as online feedback of [...] Read more.
In this paper we compared different visual feedback methods, informing users about classification progress in a steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) speller application. According to results from our previous studies, changes in stimulus size and contrast as online feedback of classification progress have great impact on BCI performance in SSVEP-based spellers. In this experiment we further investigated these effects, and tested a 4-target SSVEP speller interface with a much higher number of subjects. Five different scenarios were used with variations in stimulus size and contrast, “no feedback”, “size increasing”, “size decreasing”, “contrast increasing”, and “contrast decreasing”. With each of the five scenarios, 24 participants had to spell six letter words (at least 18 selections with this three-steps speller). The fastest feedback modalities were different for the users, there was no visual feedback which was generally better than the others. With the used interface, six users achieved significantly better Information Transfer Rates (ITRs) compared to the “no feedback” condition. Their average improvement by using the individually fastest feedback method was 46.52%. This finding is very important for BCI experiments, as by determining the optimal feedback for the user, the speed of the BCI can be improved without impairing the accuracy. Full article
Show Figures

Figure 1

21 pages, 961 KiB  
Article
Peak Detection with Online Electroencephalography (EEG) Artifact Removal for Brain–Computer Interface (BCI) Purposes
by Mihaly Benda and Ivan Volosyak
Brain Sci. 2019, 9(12), 347; https://doi.org/10.3390/brainsci9120347 - 29 Nov 2019
Cited by 20 | Viewed by 5284
Abstract
Brain–computer interfaces (BCIs) measure brain activity and translate it to control computer programs or external devices. However, the activity generated by the BCI makes measurements for objective fatigue evaluation very difficult, and the situation is further complicated due to different movement artefacts. The [...] Read more.
Brain–computer interfaces (BCIs) measure brain activity and translate it to control computer programs or external devices. However, the activity generated by the BCI makes measurements for objective fatigue evaluation very difficult, and the situation is further complicated due to different movement artefacts. The BCI performance could be increased if an online method existed to measure the fatigue objectively and accurately. While BCI-users are moving, a novel automatic online artefact removal technique is used to filter out these movement artefacts. The effects of this filter on BCI performance and mainly on peak frequency detection during BCI use were investigated in this paper. A successful peak alpha frequency measurement can lead to more accurately determining objective user fatigue. Fifteen subjects performed various imaginary and actual movements in separate tasks, while fourteen electroencephalography (EEG) electrodes were used. Afterwards, a steady-state visual evoked potential (SSVEP)-based BCI speller was used, and the users were instructed to perform various movements. An offline curve fitting method was used for alpha peak detection to assess the effect of the artefact filtering. Peak detection was improved by the filter, by finding 10.91% and 9.68% more alpha peaks during simple EEG recordings and BCI use, respectively. As expected, BCI performance deteriorated from movements, and also from artefact removal. Average information transfer rates (ITRs) were 20.27 bit/min, 16.96 bit/min, and 14.14 bit/min for the (1) movement-free, (2) the moving and unfiltered, and (3) the moving and filtered scenarios, respectively. Full article
Show Figures

Figure 1

12 pages, 693 KiB  
Article
A Novel Dictionary-Driven Mental Spelling Application Based on Code-Modulated Visual Evoked Potentials
by Felix Gembler and Ivan Volosyak
Computers 2019, 8(2), 33; https://doi.org/10.3390/computers8020033 - 30 Apr 2019
Cited by 13 | Viewed by 6274
Abstract
Brain–computer interfaces (BCIs) based on code-modulated visual evoked potentials (c-VEPs) typically utilize a synchronous approach to identify targets (i.e., after preset time periods the system produces command outputs). Hence, users have only a limited amount of time to fixate a desired target. This [...] Read more.
Brain–computer interfaces (BCIs) based on code-modulated visual evoked potentials (c-VEPs) typically utilize a synchronous approach to identify targets (i.e., after preset time periods the system produces command outputs). Hence, users have only a limited amount of time to fixate a desired target. This hinders the usage of more complex interfaces, as these require the BCI to distinguish between intentional and unintentional fixations. In this article, we investigate a dynamic sliding window mechanism as well as the implementation of software-based stimulus synchronization to enable the threshold-based target identification for the c-VEP paradigm. To further improve the usability of the system, an ensemble-based classification strategy was investigated. In addition, a software-based approach for stimulus on-set determination is proposed, which allows for an easier setup of the system, as it reduces additional hardware dependencies. The methods were tested with an eight-target spelling application utilizing an n-gram word prediction model. The performance of eighteen participants without disabilities was tested; all participants completed word- and sentence spelling tasks using the c-VEP BCI with a mean information transfer rate (ITR) of 75.7 and 57.8 bpm, respectively. Full article
(This article belongs to the Special Issue Computer Technologies for Human-Centered Cyber World)
Show Figures

Figure 1

38 pages, 5085 KiB  
Review
Brain–Computer Interface Spellers: A Review
by Aya Rezeika, Mihaly Benda, Piotr Stawicki, Felix Gembler, Abdul Saboor and Ivan Volosyak
Brain Sci. 2018, 8(4), 57; https://doi.org/10.3390/brainsci8040057 - 30 Mar 2018
Cited by 306 | Viewed by 23862
Abstract
A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed [...] Read more.
A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces for Human Augmentation)
Show Figures

Figure 1

17 pages, 1960 KiB  
Article
A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI
by Piotr Stawicki, Felix Gembler, Aya Rezeika and Ivan Volosyak
Brain Sci. 2017, 7(4), 35; https://doi.org/10.3390/brainsci7040035 - 5 Apr 2017
Cited by 83 | Viewed by 9527
Abstract
Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough [...] Read more.
Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Current Trends and Novel Applications)
Show Figures

Figure 1

Back to TopTop