Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Hongli Suo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2061 KiB  
Article
A Tube Furnace Design for the Oxygen Annealing of a REBCO Superconducting Joint
by Zili Zhang, Chuangan Liu, Yang Gao, Hongli Suo, Lei Wang, Shunzhong Chen, Jianhua Liu and Qiuliang Wang
Materials 2025, 18(13), 3053; https://doi.org/10.3390/ma18133053 - 27 Jun 2025
Viewed by 337
Abstract
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, [...] Read more.
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, which was 175C. A heat exchange model that included REBCO tape and a tube furnace was established by using this temperature as the boundary condition. At the same time, the temperature distribution of the REBCO tape in a commercial tube furnace was measured for the calibration of the heat exchange model. The feasibility and accuracy of the model were confirmed by comparing the real measurements and the simulation results. We then optimized the furnace design based on the model according to two criteria: a 20 mm length of REBCO tape should be kept at high temperatures for the oxygen annealing of REBCO joints and the length of tape at temperatures over the Ic degradation temperature should be as short as possible. The results of this furnace design investigation could help fabricate shorter REBCO superconducting joints, making the magnet more compact and decreasing the length of the Cu stabilizer layer to be removed. Full article
Show Figures

Figure 1

14 pages, 7353 KiB  
Article
Grain Rotation and Deformation Behavior in Cube-Textured Ni Polycrystalline Alloy Studied via In-Situ Tensile Testing and EBSD
by Yaotang Ji, Hongli Suo, Zhen Ma, Baoxu Huang, Jianhua Liu, Lei Wang, Zili Zhang and Qiuliang Wang
Metals 2025, 15(5), 529; https://doi.org/10.3390/met15050529 - 8 May 2025
Cited by 1 | Viewed by 446
Abstract
The cube texture in alloys shows deterioration under plastic deformation. To further observe the evolution of orientation in individual grains during deformation, in-situ tensile testing was coupled with electron backscattered diffraction (EBSD). We found that the rotation of an individual grain is not [...] Read more.
The cube texture in alloys shows deterioration under plastic deformation. To further observe the evolution of orientation in individual grains during deformation, in-situ tensile testing was coupled with electron backscattered diffraction (EBSD). We found that the rotation of an individual grain is not only determined by its Schmid factor and size, but also by the condition of the adjacent grains. We demonstrated the interactions between grains using the EBSD data in different models, including the crystal orientation, the kernel average misorientation, the Schmid factor, the inverse pole figure, and the grain reference orientation deviation. A systematic three-factor coupled model involving the Schmid factor, grain size, and neighboring grain states is proposed. Furthermore, the mechanism by which small-sized grains induce the splitting of adjacent larger grains through the pinning effect has not been reported in highly textured polycrystalline materials to date. This characterization allows us to better understand the changes in grain shape and crystal lattice rotation, which can be used to characterize other polycrystalline alloys. Full article
Show Figures

Figure 1

18 pages, 10156 KiB  
Article
Analysis of the Ni-5%at.W Alloy Substrate Texture Evolution at Different Strain Levels Using the EBSD Technique
by Xufeng Wang, Hongli Suo, Yaotang Ji, Zili Zhang, Lanjin Wang, Lei Wang, Jianhua Liu and Qiuliang Wang
Materials 2024, 17(21), 5334; https://doi.org/10.3390/ma17215334 - 31 Oct 2024
Cited by 2 | Viewed by 833
Abstract
In this paper, the texture evolution of the Ni-5%W alloy baseband with different strain variables (εvM = 3.9, 4.9, and 5.1) during rolling and annealing was studied using the electron back scattering diffraction (EBSD) technique. The results indicate that after high-temperature [...] Read more.
In this paper, the texture evolution of the Ni-5%W alloy baseband with different strain variables (εvM = 3.9, 4.9, and 5.1) during rolling and annealing was studied using the electron back scattering diffraction (EBSD) technique. The results indicate that after high-temperature annealing at 1150 °C, all three strain levels of the alloy substrates can achieve a strong cubic texture, with a content exceeding 99% (<10°). However, the texture evolution trajectory is significantly influenced by the strain level. When the content of cubic texture in the alloy substrates under strain levels of 3.9 and 5.1 is the same, significant temperature differences exist. Additionally, the different strain levels result in varying nucleation rates and growth rates of cubic texture in the Ni-5%W alloy substrates. The study reveals that in the alloy substrates under strain levels of 3.9 and 4.9, recrystallized cubic grain nuclei grow within a layered structure, resulting in larger grain sizes and lower nucleation rates. In contrast, in the alloy substrates under a strain level of 5.1, recrystallized cubic grain nuclei form from small equiaxed grains, leading to higher nucleation rates but smaller grain sizes, competing with random orientations. In the later stages of nucleation, recrystallized grains in the alloy substrates under a strain level of 5.1 exhibit a significant size advantage, rapidly growing by engulfing randomly oriented grains. Compared to the alloy substrates with lower strain levels, the recrystallized cubic grains in the alloy substrates under a strain level of 5.1 have higher nucleation rates and faster growth rates. Full article
Show Figures

Figure 1

25 pages, 11098 KiB  
Article
A Unitary Transformation Extension of PolSAR Four-Component Target Decomposition
by Tingting Wang, Zhiyong Suo, Jingjing Ti, Boya Yan, Hongli Xiang and Jiabao Xi
Remote Sens. 2024, 16(6), 1067; https://doi.org/10.3390/rs16061067 - 18 Mar 2024
Cited by 1 | Viewed by 1301
Abstract
As an improvement on the traditional model-based Yamaguchi four-component decomposition method, in recent years, to fully utilize the polarization information in the coherency matrix, four-component target decomposition methods Y4R and S4R have been proposed, which are based on the rotation of the coherency [...] Read more.
As an improvement on the traditional model-based Yamaguchi four-component decomposition method, in recent years, to fully utilize the polarization information in the coherency matrix, four-component target decomposition methods Y4R and S4R have been proposed, which are based on the rotation of the coherency matrix and the expansion of the volume model, respectively. At the same time, there is also an improved G4U method proposed based on Y4R and S4R. Although these methods have achieved certain decomposition results, there are still problems with overestimation of volume scattering and insufficient utilization of polarization information. In this paper, a unitary transformation extension to the four-component target decomposition method of PolSAR based on the properties of the Jacobi method is proposed. By analyzing the terms in the basic scattering models, such as volume scattering, in the existing four-component decomposition methods, it is clear that the reason for the existence of the residual matrix in the existing decomposition methods is that the off-diagonal term T13 and the real part of T23 of the coherency matrix T do not participate in the four-component decomposition. On this basis, a matrix transformation method is proposed to decouple terms T13 and ReT23, and the residual matrix decomposed based on this method is derived. The performance of the proposed method was validated and evaluated using two datasets. The experimental results indicate that, compared with model-based methods such as Y4R, S4R and G4U, the proposed method can enhance the contribution of double-bounce scattering and odd-bounce scattering power in urban areas in both sets of data. The computational time of the proposed method is equivalent to Y4R, S4R, etc. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

25 pages, 6207 KiB  
Article
Airborne Elevation DBF-TOPS SAR/InSAR Method Based on LOS Motion Compensation and Channel Error Equalization
by Zhiyong Suo, Jingjing Ti, Hongli Xiang, Leru Zhang, Chao Xing and Tingting Wang
Remote Sens. 2022, 14(18), 4542; https://doi.org/10.3390/rs14184542 - 11 Sep 2022
Cited by 1 | Viewed by 2099
Abstract
Digital beamforming (DBF) TOPS SAR in elevation is a new synthetic aperture radar (SAR) system, which has the advantage of wide swath coverage and a high signal-to-noise ratio (SNR). In this paper, considering the phase preservation demand for interferometric SAR (InSAR) processing, the [...] Read more.
Digital beamforming (DBF) TOPS SAR in elevation is a new synthetic aperture radar (SAR) system, which has the advantage of wide swath coverage and a high signal-to-noise ratio (SNR). In this paper, considering the phase preservation demand for interferometric SAR (InSAR) processing, the complete processing chain for DBF-TOPS SAR/InSAR in elevation is proposed with a wide beam angle and channels’ amplitude and phase errors. Firstly, we analyze the airborne motion compensation method along the line-of-sight direction for TOPS SAR with squint angle. Furthermore, for the large-range beam angle of DBF, the sub-swaths division process is presented for the range-dependent radar look angle, and the sub-swaths division criterion is also given in the analytic expression. Then, the relative amplitude and phase errors’ estimation and compensation method between channels is provided in the range frequency domain based on the pivoting filter with coherence weighting, which is convenient for DBF processing and SNR improvement. Finally, the DEMs are generated under different conditions to compare the phase preservation performance. The effectiveness of the proposed processing chain is verified with both simulated data and airborne real DBF-TOPS SAR/InSAR data. Full article
(This article belongs to the Special Issue Advance in SAR Image Despeckling)
Show Figures

Figure 1

24 pages, 2945 KiB  
Review
Recent Advances in Seawater Electrolysis
by Siqi Jiang, Hongli Suo, Teng Zhang, Caizhi Liao, Yunxiao Wang, Qinglan Zhao and Weihong Lai
Catalysts 2022, 12(2), 123; https://doi.org/10.3390/catal12020123 - 20 Jan 2022
Cited by 64 | Viewed by 15805
Abstract
Hydrogen energy, as a clean and renewable energy, has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the [...] Read more.
Hydrogen energy, as a clean and renewable energy, has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet, the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years, various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally, the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented. Full article
(This article belongs to the Special Issue Heterogeneous Electrocatalysis: Fundamentals and Applications)
Show Figures

Figure 1

9 pages, 9654 KiB  
Article
Exploration of the Effect of Oxygen on Superconductivity in MgB2 Bulk by Using Boron Powder with Different Particle and Purification
by Liangqun Yang, Hongli Suo, Lin Ma, Min Liu, Wanli Zhao, Jianhua Liu, Lei Wang, Zili Zhang and Qiuliang Wang
Crystals 2021, 11(3), 278; https://doi.org/10.3390/cryst11030278 - 11 Mar 2021
Cited by 4 | Viewed by 1963
Abstract
In this study, boron powder with different particle sizes was purified by both chemical and heat treatment methods. The reduction in the particle size can improve the chemical purification with no effort on the heat treatment. The superconducting properties of the powder drastically [...] Read more.
In this study, boron powder with different particle sizes was purified by both chemical and heat treatment methods. The reduction in the particle size can improve the chemical purification with no effort on the heat treatment. The superconducting properties of the powder drastically changed even with only a partial elimination of oxygen. On the one hand, less oxygen content resulted in high Tc and Jc values under the low magnetic field, and most importantly, a significant improvement in the superconducting connectivity (Af value). On the other hand, the degradation of Jc under a high field and a change in the pinning mechanism were also found, along with decreasing oxygen. This result indicated that oxygen, probably MgO, might act as the pinning center and as an obstacle for the supercurrent in MgB2 at the same time. This work paves the way for obtaining pure oxygen-free MgB2 and understanding the real effect of oxygen in MgB2. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 4260 KiB  
Article
Evolution of Microstructure, Texture and Topography during Cold Rolling and Recrystallization of Ni–5at.%W Alloy Substrate for Coated Conductors
by Chenxi Zhang, Hongli Suo, Zili Zhang, Qiuliang Wang, Yingxia Wang, Lin Ma, Min Liu, Yaotang Ji and Jiazhi Li
Crystals 2019, 9(11), 604; https://doi.org/10.3390/cryst9110604 - 18 Nov 2019
Cited by 2 | Viewed by 2685
Abstract
In this work, the effect of cold rolling and heat treatment upon the microstructure and texture of the surface layer and cross-section of Ni5W alloy substrate was analyzed via the EBSD technique. A typical copper deformation texture was shown by the cold-rolled Ni5W [...] Read more.
In this work, the effect of cold rolling and heat treatment upon the microstructure and texture of the surface layer and cross-section of Ni5W alloy substrate was analyzed via the EBSD technique. A typical copper deformation texture was shown by the cold-rolled Ni5W alloy substrate. The cube-oriented nuclei were attributed to the rolling direction–transverse direction (RD-TD) plane due to the presence of copper and S rolling textures. Typical large-shape cold-rolled microstructure was presented by the RD-ND surface in the cube-oriented area. During the recrystallization process, the cube-oriented grains did not have a nucleation quantity advantage, but they did have an obvious growth advantage compared with other orientation grains. They can form a strong cube texture by absorbing the random orientation and rolling orientation through the migration of large-angle grain boundaries. Full article
Show Figures

Figure 1

Back to TopTop